Double pendulum: An experiment in chaos
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We describe an experiment which takes advantage of the surprising complexity of one of the
simplest physical systems, the passive double pendulum. For large angle swings sensitive
dependence on initial conditions, the signature of chaos, may be demonstrated and quantified in
a very direct way. Small angle experiments and zero gravity experiments (with the pendulum
swinging in a horizontal plane) may also be performed. The angles are measured very precisely
and reliably using optical encoder wheels, and data are acquired and displayed using a personal
computer. The experiment is suitable for the undergraduate laboratory.

I. INTRODUCTION

In recent years there have been many experimental dem-
onstrations of chaotic motion, mcludmg some suitable for
the undergraduate laboratory.!® Most of these involve
driven systems; they have the advantage that they may be
observed over long time periods, which is essential for con-
structing Poincaré plots. However, a disadvantage of a
driven system is that it is often difficult to control the initial
conditions precisely, as the state of both the driving system
and the system proper must be controlled simultaneously.
The real beauty of the passive double pendulum system is
that the defining characteristic of chaos, namely sensitive
dependence on initial conditions, may be convincingly
demonstrated simply by performing the experiment twice
with starting conditions which match very closely [see Fig.
8(b)]; an initial separation of less than 1° is magnified over
1000-fold in a matter of seconds. This makes the system
ideal for lecture demonstrations of chaos. We can measure
the rate of divergence of nearby trajectories, and compare
this with numerically calculated Lyapunov exponents (de-
fined in Sec. IT below).

A second advantage is the flexibility of the system. As
well as the chaotic large angle motion, the small angle
motion, for which the equations of motion are approxi-
mately linear, provides a good illustration of normal
modes. And we can study zero gravity motion (i.e., no
restoring torque) by tilting the whole apparatus through
90°, so that the pendulum swings in the horizontal plane.

The two angles are measured using Hewlett—Packard
optical encoder wheels, as in the simple driven pendulum
experiment of Blackburn et al.* To couple information out
from the lower pendulum, we use a small AM transmitter
mounted on the outer pendulum, and a receiver mounted
on the pendulum frame. The data are acquired by an MS-
DOS 386 PC and manipulated and plotted using MatLab.

While writing this we became aware of a recently pub-
lished double pendulum experiment,’ that also looks at the
divergence of nearby trajectories. The clear advantage of
our experiment is that the angles are measured in real time,
and the data are acquired and displayed on a PC, elimi-
nating the need for the time-consuming analysis of photo-
graphs of stroboscopic trajectories. A typical large angle
experiment involving 10 runs takes a matter of minutes,
and it was our aim to have the small angle, zero gravity,
and large angle experiments all completable in a 3 h un-
dergraduate laboratory session.
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II. THEORY

For the moment we make the idealization of no damp-
ing, and treat the double pendulum as a Hamiltonian sys-
tem. This assumption is good provided we keep the runs
short enough that the energy damping is only a few per-
cent; we return to this point in Sec. IV. The Lagrangian for
an undamped double pendulum free to move in a plane is
given by

L=T-V, (N

where the kinetic energy T and the potential energy V are
T=3(I1+myB5) 1+ ($1+62)* + mabl (9,

+d)cos ¢, (2)

V=g(ml 4+myl3)(1—cos ¢;) +m,gl,[1—cos(¢,
+¢2)]: (3)

where g is the gravitational acceleration. ¢; and ¢, are the
angles associated with pendulums 1 and 2, respectively
(see Fig. 1). ¢,=d¢/dt. Note that ¢, is measured from the
vertical, while ¢, is measured from the line joining the two
pivot points. We will refer to pendulum 1 as the “outer”
pendulum and pendulum 2 as the “inner” pendulum, be-
cause this was the way in which our apparatus was con-
structed (see Fig. 4). m; and m, are the masses of the outer
pendulum and the inner pendulum respectively, and /; and
1, are the displacements of the center of mass from their
respective pivot points (see Fig. 1). /; is the distance be-
tween the two pivot points, and I, and I, are the moments
of inertia of the two pendula about their respective pivots.
We note that because of the complicated shape of the real
pendula (see Fig. 4) the moments of inertia I; would be
awkward to calculate in terms of m; and /;; but they are
easily measured directly, as we describe in Sec. II1. The
momenta conjugate to ¢, and ¢, are

0.7
LI =T
9
= ¢51 71+ mzl§+12+2m21213 cos ¢2)
+ ¢y (1, +mahyls cos 6,), 4)
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.7
Ly=——=1(I,+mybl; cos ¢y) + ;1. (5)
9,
L, is just the total angular momentum of the system about
the pivot point of the outer pendulum, while L, does not
have such a simple interpretation. From these we may
write down the Euler-Lagrange equations governing the
motion of the system

H= 2 Lg¢—

=12

d (0. 8%
— =)= (6)
dt\ dp; ] 94;

and solve these equations for é, and ¢,. The variables ¢,,
&5, &1, ¢, (the two angles and corresponding angular ve-
locities) then define a four-dimensional phase space.

We may also use the Hamiltonian formulation, in which
case we find

(7

L212+L2(11+m213+12+2m21213 08 ¢,) —2Ly L, (I, +mybyl5 cos ¢,)

2]2(Il+mzl3) 2m2 213 COS ¢2
+m2g12[1——cos(¢1+¢2)].

With no damping, we have
H=T+V=E, €))

where the total energy E is conserved; the system is then
referred to as a “Hamiltonian system.” Hamilton’s equa-
tions of motion are given by

. OH 10

¢i——;3z, (10)

L oH 11
i~ _5&: ( )

the four variables
(¢1,¢2,L1,L,).

For small angle motion, or if g is zero, the system is
integrable; that is, there is another conserved quantity be-
sides the energy. These cases are presented below. But for
nonzero g and large angles of swing, we have a noninte-
grable Hamiltonian system, which displays a rich range of
dynamics, including chaos. The most detailed treatments
we have found are by Rott,'” who makes the approxlma-
tion of quadratlc coupling and Richter and Scholtz,!! who
present a series of Poincaré sections to illustrate the incred-
ible richness and beauty of the dynamics.

in our phase space are then

Fig. 1. The double pendulum. m, and m, are the masses of each pendu-
lum; the dots represent the center of mass positions.
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+g(myl+myly) (1 —cos ¢;)

(8)

A. Small angle motion

For small angles ¢,,4, we can linearize the Lagrange
Egs. (6) to obtain

1
(6)-a(e (&)
where
ey =migll— Lg(myl,+myly), (13)
c,=miglls, (14)

c3=Ig(ml,+myl;) +m2g12(m11113-—11—mzlzl3),( s

ca=—magh(mobly+myB+1,), (16)
d=1,{I,+myl) —miBE. (17)

Because the equations are now linear, the motion is regu-
lar, and easily analyzed. There are two normal modes, with
frequencies

,  —(ertes) = (e +cg) > —4(ciea—cres)
ol = . g
2d
The corresponding eigenvectors have
¢2 cs—c1F (e +ca)’—4(crea— C2C3) (19)

A 2¢,

We could now rewrite an arbitrar?' small angle motion as a
sum of the two normal modes.!* The amplitude of each
normal mode component is a constant of the motion, so
this is an integrable limit.

B. Zero gravity motion

If we tilt the pendulum on its side there is no restoring
torque due to gravity, so that g=0 as far as the pendulum
is concerned. From Eqgs. (8)-(11) we can show (see Ref,
11) that the total angular momentum L, is conserved (i.e.,
we have another integrable limit), and that

R. B. Levien and S. M. Tan 1039



¢E . ﬁE(Il+mzl§+Iz+2m21213 COS ¢2) — L%
==y LI +myE) —myBE cos” ¢,

We may deduce from Eq. (20) that for a given energy E
there is a maximum value of L,. Defining

. (20)

5=t 21

1=—\E (21)
we obtain the result

R = 21+ L+ myB+ 2mybly), (22)

which occurs when ¢,=0 (i.e., the pendulum is stretched
out). We can also see that ¢, cannot be zero if |/;| <FP,
where

FP = \2(I)+ Iy + myB—2myhls). (23)

This means that the lower pendulum rotates (¢, never
changes sign). However for |/;| > [P, the lower pendulum
oscillates, with |¢,| <.

C. Large angle motion

For large angles of swing and nonzero gravity the mo-
tion of the pendulum is nonintegrable and often chaotic. A
definition of chaos is that nearby trajectories in phase space
tend to diverge exponentially in time. If we have two
nearby starting points ¢.(0) and #//(0), then as we let the
system evolve,

|7 (1) — i (2) | ~ M. (24)

The average rate A of divergence or convergence is called a
Lyapunov exponent. In n-dimensional phase space there
are n Lyapunov exponents A;_; _ , which describe what
happens to a small sphere of initial points.”> We order the
exponents so that A, is the largest exponent and A, the
smallest. The sphere is stretched into an ellipsoid, the »
Lyapunov exponents describing the contraction or expan-
sion of the ellipsoid along its principal axes.

If at least one Lyapunov exponent is positive, the system
is chaotic; even if the starting conditions are known very
precisely, any small error is rapidly magnified in time, and
predictive power is lost.

We numerically calculated the Lyapunov exponents us-
ing an algorithm'*!® which numerically integrates both
the n nonlinear equations of motion, and n copies of the
linearized equations (which describe the evolution of small
displacements about the current point in phase space). The
initial conditions for the linearized equations are a set of »
orthonormal vectors. Thus we are investigating a set of
deviations about the current point. As time goes on all
these vectors tend to diverge in magnitude, and they tend
to point in the direction of most rapid growth. A Gram-
Schmidt orthonormalization is carried out on the displace-
ment vectors every few time steps. The result of this pro-
cedure is that the first vector tends to grow as ¢*!/, the area
defined by the first two vectors tends to grow as
e+ and so on. In this way all » Lyapunov exponents
may be calculated (see Ref. 14 for a more detailed descrip-
tion of the algorithm).

Figure 2 shows such a calculation, for the system pa-
rameters given in Eq. (25) below, and initial conditions
$,(0)= —¢,(0)=120°, ¢,(0)=¢,(0)=0 (ie., the outer
pendulum displaced through 120° from the vertical, and
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Fig. 2. Numerical calculation of the four Lyapunov exponents for ¢,(0)
=—¢,(0)=120", ¢,(0) =¢,(0) =0.

the inner pendulum hanging straight down). We note the
exponents converging as they are averaged over time. Note
also that the four exponents sum to zero, as indeed they
must by Liouville’s theorem,'? which tells us that the size
of a small volume element in phase space does not change
with time, for a conservative system. Repeating this pro-
cess for a range of different starting angles ¢; (but always
with the second pendulum just hanging, and both pendula
at rest), we obtain. Fig. 3, -which shows the dominant
(most positive) Lyapunov exponent as a function of the
starting angle.

ITII. APPARATUS

The double pendulum itself (see Fig. 4) is made from
aluminium, with four hardened steel pivot bearings (each
consisting of a single cone resting in a conical recess of a
greater opening angle, so that each pendulum is supported
at just two points) to minimize bearing friction. The sys-
tem parameters were (see Fig. 1)

g=9.799403 ms~?, m;=261.9 g, m,=877 g,
L, =20x10"3m, 4L=25%10"3 m,

5 (25)
L=57x10"3m, I,=6.43x10~* kgm?
I,=7.86X10"° kg m>.
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Fig. 3. Numerical calculation of the most positive Lyapunov exponent for
different initial conditions ¢,(0). In all cases $,(0) = —¢,;(0), and 6,(0)
=,(0)=0.
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Fig. 4. The double pendulum apparatus.

/; and /, (the positions of the centers of mass for each
pendulum) were measured by balancing each pendulum
individually on a length of thread; 7, and I, (the moments
of inertia of each pendulum about its pivot point) were
measured dynamically, by timing small angle swings for
each pendulum in turn, which have period

}-h
T,'= 2my——.
mgl;

Each of the angles ¢,,¢, is measured using a HP model
HEDS-6100 code wheel and a HP model HEDS-9000 en-

(26)

MOUNTED ON UPPER PENDULUM

tronsmitting coll receiving coll

/

79

10 MHZ100 pF

coder module.’ The encoder is a C-shaped module with a
single lensed light-emitting diode (LED) on one side of a
1.8 mm gap, and four photodetectors on the other. The
code wheel, a 5 cm diam metal foil disk, rotates between
the LED and the detectors. 1000 slots are cut into the
periphery of the disk in such a way that when two detec-
tors are illuminated, the adjacent pair are in darkness.
There are two channels of transistor-transistor-logic
(TTL)-compatible output, consisting of two square waves
90° out of phase. Thus there are four distinct binary pat-
terns corresponding to the passage of a single slot; so the
angle is measured to 360/4000=0.09° accuracy, and direc-
tion is sensed as well.

For angle ¢, the output of the encoder is fed directly to
a HP model HCTL-2000 12 bit counter on a prototype
board (a PR-2 from JDR Microdevices) in the PC (a
MS-DOS 386). To measure angle ¢, we did not want to
use wires (which would twist) or brushes (which would
introduce extra friction) to couple the information out, so
an alternative had to be found. ¢, is measured with an
encoder, and the two output channels are amplitude mod-
ulated up to 8 and 10 MHz using two ceramic resonators
and a 7400 NAND gate mounted on the outer pendulum
(see Fig. 5). The 5 V power supply for the encoder module
and the NAND gate is provided by a 9 V battery and a
78L05 regulator, mounted on the outer pendulum (see Fig.
4). The output of the NAND gate drives a small transmit-
ting coil mounted on the outer pendulum, which is induc-
tively coupled to a receiving coil mounted on the frame.
Both coils are mounted on the pivot axis, so the geometry
remains the same as the outer pendulum is rotated. The
signal from the receiving coil is fed via a coaxial cable to a
box mounted on the pendulum frame, where it is amplified
using a NE 592 broadband video amplifier (see Fig. 5).
Two more of these amplifiers separate out the 8 and 10
MHz components using the same type of ceramic resona-
tors; then rectification and low-pass filtering stages and a
TTL-compatible comparator (LM 339) reconstructs the

MOUNTED ON FRAME

tuning

+5V +5v  +5v

35v

uH
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Fig. 5. The modulation/demodulation circuit.

1041 Am. J. Phys., Vol. 61, No. 11, November 1993

R. B. Levien and S. M. Tan 1041



(a)

Y T B e
0.2F, v 4o Sy . 3
o s -
’ [

0.0:— . N <
3 ) -
] T R AN - %
—0.4p : v E
1 1 \A 4 1 1 e 1 1 1 1 1 hu

$1, $y (rad.)

®

0.2F
0.0 -

¢1: [ ("°d~)

~0.2

()

$1.9, (rad.)

Fig. 6. Small angle results. The solid lines are ¢,(r), the dotted lines are
¢,(#). Graph (a) shows the high frequency normal mode, graph (b) the
low frequency normal mode, and graph (c) a sum of the two modes.

square wave signals. The output of the LM 339 is then fed
to another HCTL-2000 on the prototype board.

The HCTL-2000 is a 12 bit counter, but the high byte
and the low byte must be read separately, via an 8 bit
output port. The output ports of the two HCTL-2000’s are
connected to ports A and B of an INTEL 8255 Program-
mable Peripheral Interface chip, in mode 0 (basic input/
output). Two further 4 bit ports on the 8255 are used to
control the HCTL-2000’s. An INTEL 8254 timer chip in
mode 3 (square wave mode), with sampling frequency set
by the user, generates an interrupt signal every sampling
period, whereupon the PC reads the current count from
both HCTL-2000’s. The time interval between samples
varied between 1 ms and 0.1 s.

IV. EXPERIMENTAL RESULTS
A. Small angle motion

The small angle motion is shown in Fig. 6, which shows
experimental data. The solid lines show ¢,(¢), and the dot-
ted lines ¢,(¢). Graph (a) shows the high frequency mode,
graph (b) the low frequency mode, and graph (c) an ar-
bitrary sum of the two. To excite each normal mode we
made use of Eq. (19) and the parameters given in Eq. (25)
to find the corresponding eigenvector. The angles ¢; and ¢,
are displayed in real time on the computer screen until a
key is hit to begin recording data; so with a little dexterity
the user can set the two initial angles. The fact that the user
can manually adjust the start vector to be an eigenvector
makes this a good “hands-on” illustration of normal
modes. The time between samples was set at 1 ms, so the
period of the normal mode oscillations could be precisely
determined by simply measuring the time between zero
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Fig. 7. Zero gravity results. Graph (a) shows /; as a function of time
(solid line) and £ (dotted line). Graph (b) shows ¢,(¢).

crossings (the pendulum is “zeroed” by letting it hang
before the start of each run). We obtained normal mode
frequencies

Sf1=3.06+0.06(3.14:0.01) Hz, 27)
f2=155+0.02(1.566 £0.005) Hz, (28)

where the theoretical values [from Eq. (18)] are shown in
brackets. For the error in the measured values we have
simply taken the difference between the frequencies mea-
sured using the ¢, and ¢, data. This is a measure of how
precisely we have excited each normal mode [compare Fig.
6(c) to Figs. 6(a) and 6(b)].

B. Zero gravity motion

Figure 7 shows the results of the zero gravity experi-
ment. The graph requires some explanation. We wished to
illustrate the change from ¢, rotation to ¢, oscillation,
depending on the value of

L,
ll=VE. (29)

To do this, we set the inner pendulum rotating [this cor-
responds to the times when graph 7(b) is monotonically
decreasing], then give the outer pendulum a push, aiming
to change the value of /;. If /; is now greater than 5%, we
expect the ¢, motion (of the inner pendulum) to become
oscillation. We then stop the pendulum and repeat the
experiment many times; thus Fig. 7 actually shows several
repetitions of this procedure. The value of A®=0.039
m kg'/? is shown in the dotted line in Fig. 7(a). We expect
1, to be piecewise constant in time; the oscillations seen in
graph 7(a) are due to small errors in the parameter values
in Efll (25). The theoretical limit on /; is **=0.050
m kg'”2. For 0 </, < 5 we see ¢, rotation, and for £* </,
< I™* we see ¢, oscillation.

_ To calculate L; and E we needed the angular velocities,
é,(t) and ¢,(¢), which we calculated from the time series
#,(2) and ¢,(¢), using a least squares fit to the last few
points, with an exponentially decreasing weight.
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Fig. 8. Large angle results. Graph (a) shows ¢,(¢), graph (b) shows
&,(1); the solid and dotted lines are two runs with very similar initial
conditions.

C. Large angle motion

Figure 8 shows two runs with initial conditions ¢,(0)
= —¢5(0) = —120°, ¢,(0)=¢,(0)=0 (as for the small
angle experiment, the angles are displayed in real time on
the computer screen, so the initial angles may be set quite
precisely). To overlay the plots, we started collecting data
before letting the pendula go, then chopped off the zero
velocity part at the beginning of each run. The sensitive
dependence on initial conditions is dramatically illustrated,
as an initial difference in ¢,(0) of less than 1° is amplified
by three orders of magnitude in less than 5 s. The diver-
gence is completely dominated by the largest Lyapunov
exponent A4, so this is by far the easiest exponent to mea-
sure experimentally. The other exponents may in principle
be extracted from the experimental data, but the analysis is
far more complex [see Ref. 14] and longer runs are needed,
whereupon damping becomes much more of a problem
(see below).

To quantify this divergence rate, we took ten 5 s runs
with as near as possible to the same starting conditions. We
then estimated the rate of divergence by taking the ¢, tra-
Jjectories ¢5(2) (i=1,...,10), and making a linear fit to the
log of the difference between all pairs of trajectories

In|@5(8) —h(0) | ~A'2. (30)

We note that there is nothing special about ¢,; we obtained
the same divergence rate A, using the the ¢, trajectories, as
all variables diverge at the same rate (we could also have
used ¢; or ¢,, but these variables are not directly mea-
sured). As the trajectories diverged in time, we used only a
subset of the full data set to estimate A5*. For each pair of
trajectories we only used data from time =0 up to the
time at which the difference between the two trajectories
had grown to a cutoff size, (Ad,) ™. We then averaged the
results for all pairs of trajectories to get an average diver-
gence rate.

Figure 9 shows the results of the calculation. We have
plotted the estimated divergence rate A" vs the maximum
difference (A¢,)™ between any two trajectories that we
allowed in the calculation. In actual fact the difference
trajectories ¢, (#) —¢{(#) typically oscillated in time as well
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Fig. 9. Estimate of the divergence rate of nearby trajectories, as a function
of the maximum separation between trajectories (solid line). The initial
conditions were ¢,(0)=—¢,(0)=120°, ¢,(0)=¢,(0)=0. The dotted
line is the numerical calculation of the dominant Lyapunov exponent.

as growing exponentially, so the fit to a simple exponential
was very crude. For small (A¢,)™* we are looking at the
oscillatory behavior, and hence obtain an inflated estimate
of the divergence rate. For large (A¢,)™* the trajectories
are no longer “close,” and so the divergence rate is no
longer a sensible thing to measure. But at some intermedi-
ate range of (A¢d,)™", we expect the calculation to con-
verge on the actual divergence rate, as we can see happen-
ing in Fig. 9. The dotted line shows the numerically
calculated dominant Lyapunov exponent, for the same ini-
tial conditions. It should be stressed that the Lyapunov
exponent is by definition an average over a long time pe-
riod; while we have only measured the initial divergence
rate. So while we might have expected agreement to within
an order of magnitude, the fact that we get such close
agreement must be reflecting a peculiarity of the system
rather than a general rule.

Figure 10 shows a similar calculation for initial condi-
tions ¢,(0) = —,(0) =75°, ¢,(0)=¢,(0)=0. Again the
numerically calculated dominant Lyapunov exponent is
shown in the dotted line; we note that it is much greater
than the actual divergence rate. Because in this case the
divergence rate is much smaller (see Fig. 4), we had to
take 10 s runs instead of 5 s runs. The effect of the damping
then must be taken into account. We can build damping
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Fig. 10. Estimate of the divergence rate of nearby trajectories, for ¢,(0)
=—¢,(0) =75, ¢;(0)=4¢,(0)=0 (solid line). The dotted line is the
numerically calculated dominant Lyapunov exponent.

R. B. Levien and S. M. Tan 1043



into the equations of motion in a phenomenological way,
by adding terms —2a4, to ¢;, where a;~0.05 s™' and
a,~0.09 s~!, from measurements of the damping rate for
each pendulum individually. When this is done and the
Lyapunov exponents are numerically calculated over a 10 s
time period in an attempt to duplicate the experiment, we
obtain for the largest exponent A,=0.41+0.04 s~! (the
error reflects the amplitude of the fluctuations in the nu-
merical estimation of A, after 10 s; compare Fig. 3), in
good agreement with the measured value.

V. CONCLUSIONS

We have described an experiment which is able to reveal
some of the dynamical complexity of one of the simplest of
physical systems, the double pendulum. As well as a con-
vincing demonstration of the defining characteristic of
chaos, sensitive dependence on initial conditions, experi-
ments in the two integrable limits of small angle motion
and zero gravity motion may also be performed.

The damping rate was too high to see experimentally the
beautiful Poincaré plots (needing many cycles of motion
with only small percentage energy loss) that have been
seen in numerical calculations.”” However, scaling the ap-
paratus up in mass appeared to raise the effective Q of the
system, (though our pivot bearings would probably have to
be replaced by something more sturdy) so such an exper-
iment may be possible in the future.
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63-64.

DID GOD HAVE ANY CHOICE?

Let me turn to the question of whether the laws in any sense Aave to be what they are. Could
the world have been otherwise? And if so, how has a selection been made? It has long been a
dream of the unifiers that when we finally write down that elusive Theory of Everything in a
single magnificent formula (that you can wear on your T-shirt, remember), this superlaw will
be the only mathematically and logically self-consistent statement. Thus one reads the follow-
ing in the book Gravitation, by Misner, Thorne, and Wheeler: “Some principle uniquely right
and uniquely simple must, when one knows it, be also so compelling that it is clear the universe
is built, and must be built, in such and such a way, and that it could not possibly be otherwise.”
It is this issue that I believe Einstein was referring to when he said that what really interested
him was whether God had any choice in the construction of the world.
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