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CHAOTIC WATER DROP EXPERIMENT

 1. Introduction
Dripping water from a faucet is a well-known example of chaotic dynamical systems

easily seen in daily life.  O.E. Rössler introduced the dynamics of a leaky faucet as a model of

a nonlinear chaotic system in 1977.  He suggested that the formation of water drops at the

nipple of a faucet could exhibit chaotic behavior.  This was confirmed initially by R. Shaw

and later by Martien et al.  In 1985, Martien et al. launched thorough investigation of

behaviors at various flow rates and collection of chaotic attractors for the system.  Period

doubling was widely studied in leaky faucet dynamics. Other interesting phenomena were

seen, such as tangent intermittence, quasi-periodicity and boundary crisis, and Hopf

bifurcation.  Since the original pioneering with the study of the leaky faucet, many

experimental and theoretical improvements upon the apparatus and the mathematical model

have been made by many researchers over the years.

The use of modern technology has allowed for extensive study of the formation of the

droplets of water.  Buch et al. used a high-speed digital video camera to allow a better

understanding of the dynamics of the system by showing details of drop oscillations,

formation, and separation of the droplets.  With this information, some parameters of the

system are better understood.  Kiyono and Fuchikami have developed equations that consider

the fluid dynamics of the droplets more thoroughly.

In this experiment, you will study the path to chaos as a function of flow rate, and try

to identify strange attractors with a standard leaky faucet apparatus.  This is an open-ended

experiment and you are encouraged to explore the dynamics of leaky faucet as your time

permits.  You may need to refer to references to widen your understanding of the underlying

theoretical and experimental aspects.
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2. Theory

For a theoretical analysis of the complex phenomena observed in the dripping faucet,

a simple model treating the formation and the falling of the drop as a damped harmonic

oscillator with a variable mass is generally adopted:

               d
dt

m dx
dt

kx b dx
dt

mg





= − − +                  (1)

                                             dm
dt

R=                          (2)

where x  is the position of the center of mass of the forming drop, m  is its mass, g  is the

gravitational acceleration, k  is the spring constant, b  is the damping parameter, t is the time,

and R is the flow rate (mass per unit time) . Here k  represents the surface tension of the

liquid and b  depends on the liquid viscosity and on the nozzle characteristics. When the

downward displacement of the water reaches a critical value cx , the mass is suddenly

reduced by M∆ and the position of the remaining mass oscillates according to (1) and

changes according to (2).

The behavior of the model depends critically on the mechanism used to simulate the

release of a drop. Both the mass of the falling drop and the initial conditions for the residual

mass should be determined. Theoretically, the drop mass M∆ can be produced in several

ways, and three popular mechanisms are:

                                        cM Mα∆ =                (3.1)

  cM vα∆ =             (3.2)

 cM Mvα∆ =                        (3.3)

The best choice seems to be the last one, Eq. 3.3 since the mechanism of the release of the

drop with a mass proportional to momentum seems to be more realistic and in better
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agreement with experimental results. In addition to the determination of the mass of each

falling drop, the initial conditions for the residual mass must be specified. Regarding the

breaking of the drop at the critical point cx , two different models have been proposed:

(a) A spherical drop and a residue point mass,

            (b) Two spherical drops, one falling off, the other forming a residue for the successive

drop.

In the first model, given the system center of mass to be at cx , the initial position for

the residue mass is given by

   0 c
c

Mx x r
M
∆= −                                                         (4)

where  

1
33

4
Mr

πρ
 ∆=  
 

 and ρ  is the liquid density (Fig. 1a). Whereas in the second model the

position of the residue is given by

  ( )0 1 2c
c

Mx x r r
M
∆= − +                               (5)
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  and 1M M= ∆ , 2 cM M M= − ∆ (Fig.1b). In both models, the initial

velocity of the residue is set equal to cv .
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(a)

(b)

Fig.1. Mechanism of drop breaking at the threshold: (a) one-sphere and  (b) two-sphere

models
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Exact solutions of equations (1) and (2) is not easily realized. One could assume an

approximate equation of a damped-oscillation form:
1 2
3 3( ) sin( ) t

ix t At B t e γω −= + + Ω                       (6)

This would explain the repeats of period-one and period-two motion in a bifurcation diagram

in terms of a feed back loop in the phase angle Ωi .

One could successfully reproduce bifurcation diagrams including the period-doubling

transition to chaos from both the approximate equation (6) and from the numerical

integration of equations (1) and (2).

Applying fluid dynamical computations and one can find that the breakup of a drop

occurs through two main processes.  The first part is obviously the break off of the main

drop.  The second part, immediately after the separation of the main drop, is the necking in

the fluid left on the tip of the faucet in which surface tension is a restoring force, ultimately

causing the formation of a secondary, or satellite, droplet. We should treat the spring constant

k as a function of mass, to allow the mass-spring model to be more realistic. Then the

equation of motion is as follows:

                        
2

02

d z dz dm dzm v kz mg
dt dt dt dt

γ + − = − − +  
  (7)

where the position z of the mass point in this model corresponds to the position zG of the

center of gravity of the drop of fluid (approximated to an integral number of cylindrical disks

acting under gravity).  The second term in the equation represents adhering of mass with a

relative velocity.  The mass increases as in (2), with 2
0R a vπ= , a being the radius of the

faucet nozzle.  The mass-dependent spring constant varies linearly with mass and the

equation is initially determined by a and the boundary condition that the spring constant

equals zero when the mass undergoes free-fall.  This method is unique in the consideration

that it implies that the dripping time interval is decided uniquely from the value of the

previous mass left on the nozzle after the break off of the falling drop.  Their model allowed



Physics 303 Lab 7/11 Physics Dept, UIUC
Chaotic Water Drop Experiment

8/2001
Copyright @ 2001 The Board of Trustees of the University of Illinois.  All rights reserved.

for the natural occurrence of necking after drop formation and showed that it had and integral

role in determining the dripping time interval.  Although the model is based on a one-

dimensional map system, it will reproduce a variety of dynamical behaviors seen in many

experiments systematically.

3. Experimental Set-Up
The schematic design of the experimental apparatus is presented in Figures 2 and 3.

The apparatus consists of an insulated plastic jug with a reservoir jug atop a stool connected

to its top.  Water is siphoned from the reservoir jug to the insulated jug, ensuring a consistent

water level and therefore a consistent pressure associated with the flow rates.  Without the

extra reservoir of water, the water level inside the insulated jug would not be maintained and

the flow rate of the water would decrease linearly with the decreasing height of the water.  It

must be noted, however, that all sets of data were collected over a small period of time.  The

assumption can then be made that the water level stayed fairly constant and flow rate was not

affected, allowing some error in the ability of the siphon to keep a constant level of water.

Drift, or the drifting of the apparatus from one constant flow rate to another without any

external interference, is inevitable.  Taking data sets over relatively short periods of time also

minimizes this effect.

A narrow glass tube with a flow rate control valve extends from the bottom of the jug

down an I-beam, to which the whole apparatus is rigidly attached.  At the end of the beam,

the glass tube bends down and ends.  Two stacked funnels surround the end of the glass tube

and protect it from ambient air drafts and other phenomena that might disrupt the drop rate or

the alignment of the drops with the sensory mechanism.  The funnels also assist in deterring

the occurrence of  “double pulsing”. When the laser light passes through the very center of

the water drop, the geometry allows for light to be detected by the sensory mechanism,

causing one water drop to look like two small ones.  The translucent funnels diffuse the laser

beam so that at no point does the beam fully traverse the middle of the water drop, yielding

accurate data. However, to make sure there is not a problem of double pulsing, practically

one can tinker a bit with the position of the funnel.
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Fig.2  Experimental set-up for the chaotic faucet.
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Fig.3 Laser detection system used to detect water drops.

The sensory mechanism is a very simple optical electronic device (laser +

phototransistor detector), which measures the drop width and the time interval between them.

When a water drop intercepts the laser beam, the phototransistor detector circuit emits a

pulse.  The pulse is sent to the DAQ circuitry.  The DAQ circuit transforms the analog pulse

from the water drop to a square pulse, and then measures the width of the pulse and the

elapsed time interval since the last drop.  From there, the information is sent to a computer

running a LabWindows CVI analysis program with the capability to store the data and create

various plots.

The CVI computer program, called “h2odrop.c” is a typical data acquisition program

that is for all intents and purposes self-explanatory.  To start data collection, press “Start,”

and to stop data collection, press “Stop.”  Only after data collection is stopped can various

plots be selected from the pull-down menus and printed.  One small detail that must be

attended to during data collection is the correlation of the clock driving the DAQ circuit

(selected on the top of the circuit) and the computer program (selected from the left most

LASER DETECTOR
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pull-down menu). By switching between 10 kHz and 100 kHz clocks one can overcome the

problem of counter overflow. Since the circuit uses digital counters with a finite maximum

count to determine the time between pulses if a drop happens to be unnaturally wide or

similarly the time between drops excessively long (the limits being 0.32768 s for 100 kHz

and 3.2768 s for 10 kHz signal) the counters will roll over from their maximum values back

to zero, which may cause an error in time interval readings.

4. Data Analysis

The most useful way of representing data obtained from the chaotic faucet is drawing

a return map. Return maps are generally used in analyzing chaotic systems. In a return map

drawn by the computer program you focus on three drops at a time; the time between the first

and the second is taken to be the x-coordinate of the return map, the time between the second

and the third is taken to be the y-coordinate. When this process is continued for drops one to

three, than two to four, and so on, a scatter plot of points nt vs. 1nt +  is obtained. The computer

program also produces a similar graph of relative drop widths. When the time interval

between drops or the drop widths are constant, the return map will consist of one point. But

when they change in time, the return map will show various structures according to the

behavior of the system.

In this experiment, the aim is to investigate the dynamical behavior of the dripping

faucet by creating time interval and pulse width return maps.  Begin the experiment from low

flow rates. As you increase the flow rate, you will observe the transitions from periodic

behavior to chaotic behavior.  Determine the critical drop rates where bifurcations and

chaotic attractors are found.  Which flow rates would guarantee period-1 (or a single period)

motion?  Discuss other quasi-periodic motions and attractors that you observed.
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