
VOLUME 85, NUMBER 25 P H Y S I C A L R E V I E W L E T T E R S 18 DECEMBER 2000

5332
Theoretical Analysis of a Dripping Faucet

Bala Ambravaneswaran, Scott D. Phillips, and Osman A. Basaran*
School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907-1283

(Received 26 January 2000; revised manuscript received 26 May 2000)

While previous studies of continuous emission of drops from a faucet have shown the richness of
the system’s nonlinear response, a theory of dripping has heretofore been lacking. Long-time behavior
of dripping is simulated computationally by tracking the formation of up to several hundred drops in a
sequence, rather than the usual single drop, at a given flow rate Q and verified by experiments. As Q
increases, the system evolves from a period-1 system through a number of period doubling (halving)
bifurcations as dripping ultimately gives way to jetting. That hysteresis can occur is also demonstrated.

PACS numbers: 47.55.Dz, 47.20.Ky, 47.20.Ma, 47.52.+j
Drop formation from a faucet is a ubiquitous phenome-
non. It finds applications in areas as diverse as ink-jet
printing [1], biochip arrayers [2], and separations [3]. Most
studies of drop formation to date have focused on details of
drop breakup, examples of which include stability analyses
of jets [4], high-speed visualization studies of drop breakup
[5,6], and theoretical [7–10] and experimental [8–11] in-
vestigations of details of pinch-off. Although the forma-
tion of a single drop has received considerable attention
for over a century, the parallel problem of the formation of
several drops in a sequence—dripping—has been a topic
of investigation only in the last decade [12–15]. Follow-
ing Rössler’s [16] suggestion, Shaw [12] carried out a pio-
neering study on the formation of thousands of drops in
succession. The fact that such a simple system, which
is found in every household, can exhibit such rich non-
linear dynamics is indeed remarkable. Here, we present
an ab initio computational analysis of a dripping faucet,
which has heretofore defied theoretical analysis, and sup-
port the predictions by experiment.

Beginning with Shaw’s work [12], all experimental stud-
ies of dripping have relied on the use of a drop-counter
apparatus wherein a laser beam directed at a detector is
interrupted whenever a drop falling from a faucet (tube)
crosses the beam’s path. Thus the experiment provides the
time interval between the drops, t1, t2, . . . , ti , . . . , where ti

is the time interval between the ith and �i 2 1�th drops.
Such studies, however, neglect entirely the physics of drop
formation and view the system as a black box that gener-
ates a stream of numbers t1, t2, . . . . This discretization of
the continuous system, which is effected by looking only at
�ti�, approximates a Poincaré section of the flow in the sys-
tem state space. A convenient way of analyzing such time
interval data to detect possible determinism is by means
of time return maps [12,13]. Each point in such a map is
determined by the ordered pair �tn, tn11� for some n. Pre-
vious researchers [12–15] have inferred several structures
and patterns from such simple maps indicating that the
presumably infinite-dimensional system behaves in a “low-
dimensional” fashion. This characteristic of the system has
triggered a parallel set of investigations [12,15,17,18] that
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use simple spring-mass models to surmise the complicated
yet low-dimensional behavior of the leaky faucet. Com-
mon to these models is the ad hoc manner in which drop
breakup is mimicked by the removal of a specified amount
of mass from the existing mass when the spring extension
exceeds a threshold.

Several features distinguish this study from others. Two
new approaches, both of which supersede measurement
of time intervals, are used to probe the physics of drip-
ping. First, for the first time, the equations that govern
the dynamics of Newtonian liquids are solved to predict
the formation of hundreds of drops in a sequence from
a capillary into air. This computationally intensive task is
made possible by the use of a one-dimensional (1D) model
based on a slender-jet approximation of the axisymmetric
Navier-Stokes equations (ANS) [7,19,20]. In dimension-
less form, the 1D equations are
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where t is time, h�z, t� is the radius of the liquid neck at
a distance z from the capillary exit, yz�z, t� is the axial
velocity of the liquid, and 2H is twice the mean curva-
ture. In Eqs. (1) and (2), length and time are measured in
units of the capillary radius R and the capillary time tc �p

rR3�s, respectively, where r is the density of the liquid
and s is the surface tension of the liquid-gas interface. The
governing dimensionless groups that arise from this for-
mulation are the Ohnesorge number Oh � m�

p
rRs, the

gravitational Bond number G � rgR2�s, and the Weber
number We � rU2

fR�s, where m is the viscosity of the
liquid, g is acceleration due to gravity, and Uf is the aver-
age velocity of the liquid in the capillary, related to the flow
rate Q by Q � pR2Uf . (The Weber number enters the
problem through the imposition of a plug flow velocity pro-
file at the tube exit. Although the actual inflow boundary
© 2000 The American Physical Society
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condition is parabolic and should be imposed upstream of
the tube exit, Ref. [21] shows that this has an insignificant
effect on the dynamics.)

The finite element method is used to solve Eqs. (1) and
(2), details of which can be found elsewhere [21]. Compu-
tations are carried out by starting from an initial state which
is, unless otherwise mentioned, a static hemisphere and
continued until a specified number of drops are formed.
Pinch-off occurs when the dimensionless minimum radius
of the fluid neck, hm, falls below 1023. It was ensured that
the dynamics were insensitive to values of hm , 1023.
Once breakup is detected, the drop that just detached
is discarded and a new mesh is constructed. An earlier
study [21] has compared predictions made with the 1D
model with those made by solving the ANS [10] and
shown that for We � O �0.1� the two approaches agree
within a few percent so long as 0.01 & Oh & 0.5,
whereas for We * O �1� discrepancies between them
become prevalent.

Second, a Kodak Ektapro intensified imager, at rates up
to 12 000 frames per second, is used to visualize the entire
dynamics of dripping and to verify the computations. In
the new experiments, a Sage MP362 syringe pump is used
to drive the flow at a constant rate with 61% accuracy,
as opposed to driving it by a constant hydrostatic pressure
head as in previous studies [12–14]. It has been ensured
by direct observation in the experiments that the contact
line remains pinned to the outer sharp edge of the capillary
wall throughout the dynamics, as assumed in the computa-
tions [21].

At the incipience of breakup, a nearly spherical mass
of liquid — a primary drop — is connected via a thin
filament — a neck — to a mass of liquid attached to the
capillary. Drop formation at low flow rates, or low We, is
accompanied by satellite formation due to secondary
breakup after the primary drop is formed. The extended
neck recoils upward from the point of breakup and pinches
off again at its top leading to the formation of the satellite
[9,21]. However, as We is increased, previous studies
[21,22] have shown that above a critical We � Wec there
is insufficient time for the secondary pinch-off to occur
before the next primary drop forms. Here, attention is
focused on situations in which We . Wec so that satellites
are not formed.

For We * Wec, the system exhibits a period-1 response
where the dynamics is the same from one drop to the
next. In this case, tn11 � tn and the time return map
is just a single point on the diagonal line in �tn11, tn�
space. Figure 1(a) shows an example of such a period-1
response for a system characterized by Oh � 0.1 and G �
0.5, henceforward referred to as system S, at We � 0.12.
The evolution with We of the dynamics of this system will
be discussed in detail in this paper. Figure 1 also shows
time return maps for this system, (b) and (c), and another
system, (d), when We . 0.12. These will be referred to
throughout the paper in order to highlight various nonlin-
ear responses.
FIG. 1. Time return maps of responses that are (a) period-1,
(b) period-2, (c) period-4, and (d) chaotic. Here G � 0.5. In
(a)–(c), Oh � 0.1 and We � 0.12, 0.135, and 0.14. In (d),
Oh � 0.01 and We � 0.19.

A convenient way of displaying the response of sys-
tem S to changes in We is by the bifurcation diagram of
Fig. 2. This diagram shows the variation of the dimension-
less lengths of drops at breakup, Ld , henceforth termed
limiting lengths, with We. In the period-1 regime as seen
from Fig. 2 for We & 0.125, there exists only one lim-
iting length corresponding to each value of We. As the
flow rate is increased, system S undergoes a period dou-
bling bifurcation at We � 0.125 resulting in a period-2

FIG. 2. Bifurcation diagram for a system characterized by
Oh � 0.1 and G � 0.5 with We as the bifurcation parameter
and Ld as the response. The We range is divided into zones
of different responses. Zone A: period-1; zone B: period-2;
zone C: period-4; zone D: hysteresis between period-1 and
period-2 paths; zone E: period-2, zone F: parallel hysteresis
between several period-2 paths; zone G: period-2; zone H:
parallel hysteresis between a period-1 and two period-2 paths;
zone I: hysteresis between period-1 and period-2 paths; zone J:
period-1; zone K: period-2; and zone L: period-1.
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system where every other drop is formed in an identical
fashion. This bifurcation is made plain in Fig. 2, e.g., at
We � 0.135, where the existence of two limiting lengths
at a given value of We can clearly be seen. The corre-
sponding time return map in this period-2 regime is shown
in Fig. 1(b). This map consists of points corresponding to
over 50 consecutively formed drops and the period-2 re-
sponse is made evident by the clustering of data around
two points, viz. tn12 � tn.

Figure 3 compares experimentally observed (top row)
and computationally predicted (bottom row) shapes
at breakup of ten successive drops in such a period-2
regime for a system consisting of a 70% glycerin in
water solution dripping from a capillary of R � 0.15 cm
when Q � 40 mL�min (Oh � 0.069, G � 0.43, and
We � 0.26). Although period doubling in a dripping
faucet has been inferred by several experimentalists
from time interval data, this is the first time that it has
been determined by computation or direct visualization.
The values of Ld for the long and short drops were,
respectively, 8.6 and 7.0 in the experiments and equaled
8.4 and 7.2 in the computations. The measured values of
the long and short time intervals were, respectively, 91 ms
and 54 ms while the computed values equaled 88 ms and
51 ms. For this system characterized by Oh � 0.069 and
G � 0.43, the onset of period-2 response occurred when
We � 0.223 in the experiments and We � 0.226 in the
computations. The remarkable agreement found between
experimental and computational results reported in this
paragraph and in other situations (not shown) justifies the
use of the 1D model to study the formation of hundreds of
drops in a sequence. More reassuringly, computed values
of Ld and drop volume(s) remain unchanged to five or six
decimal places after as many as 100 periods even in the
vicinity of bifurcation points.

FIG. 3. Experimental observation (top row) and computational
prediction (bottom row) of period-2 response of a system charac-
terized by Oh � 0.069 and G � 0.43 when We � 0.26. These
shapes are of ten consecutive drops after initial transients have
died out and period-2 response has set in.
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System S exhibits a plethora of interesting behavior as
We increases. To emphasize the different responses that
are observed as We is varied, Fig. 2 is divided into several
zones. The types and directions of the arrows shown in
Fig. 2 and Fig. 4 to follow are clarified below. Thus, zone
A represents the period-1 regime which bifurcates into the
period-2 regime referred to as zone B. System S undergoes
yet another period doubling bifurcation to yield a period-4
response, where every fourth drop is formed in an identi-
cal fashion, viz. tn14 � tn, as zone B gives way to zone
C. This characteristic is clearly seen from the bifurcation
diagram in Fig. 2, which shows that there are four different
limiting lengths at the same values of We in zone C, e.g.,
at We � 0.14, and also from the time return map shown
in Fig. 1(c). Further increases in We result in a bifurcation
that causes the system to revert back to period-2 response
near the end of zone C, as shown in Fig. 2.

Most interestingly, a sudden transition takes place from
a period-2 response at the end of zone C to a period-1 re-
sponse at the beginning of zone D. Thereafter the system
follows the path indicated by the solid single-headed ar-
row as We is increased. This transition is the result of
a sudden jump and differs from the bifurcation from a
period-4 to a period-2 response that is seen in zone C. This
sudden jump indicates the possibility of hysteresis where
the dynamics may follow a different path were We to be
decreased. To test this hypothesis, the numerical algorithm
has been modified to compute steady dripping at a Weber
number We 6 DWe, where DWe is a small increment, by
using the solution at We as the initial condition. These
runs, referred to as sweeps, differ from those discussed so
far. Such sweeps revealed that the system jumps again,
but now from a period-1 response in zone D to a period-2

FIG. 4. Close-up of zones D and E of Fig. 2, (a), and sequence
of shapes of drops at breakup obtained at We � 0.15 when
following different hysteresis paths, (b) and (c). Here path 1,
(b), exhibits a period-1 response and is encountered when We
is increased while path 2, (c), exhibits a period-2 response and
is encountered when We is decreased. The dashed lines in (a)
indicate a jump from the end of path 1 to path 2.
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response in zone E as We is increased. Once in zone E, if
We is decreased in a sweep mode then the dynamics fol-
low a path into zone D that is entirely different from the
path encountered in zone D when We is increased. Not
too surprisingly, the new path followed, indicated in zone
D by the dashed single-headed arrows, reaches the origi-
nal period-2 system that has already been seen at the end
of zone C. To emphasize the path dependence of solu-
tions, in Figs. 2 and 4 solid double-headed arrows indicate
paths that are followed uniquely, whereas solid and dashed
single-headed arrows indicate paths followed whenever We
is increased and decreased, respectively.

Figure 4 shows a close-up of the bifurcation diagram of
Fig. 2 to emphasize the occurrence of hysteresis in zone
D. Two distinct paths that the dynamics follow when We
is increased and decreased in a sweep mode are labeled 1
and 2, respectively. In Figs. 2 and 4, it should be noted that
at a given value of We solid double-headed arrows indicate
that the system sees all the limiting lengths corresponding
to that particular We. By contrast, single-headed arrows
indicate that the system exists in either one of the states
and follows either one of the paths, but not both, indicated
by the arrows. Thus Fig. 4 shows that at a particular We
in zone D, the response is period-1 if We is increasing
whereas it is period-2 if We is decreasing. Figure 4 shows
the dramatically different shapes of four consecutive drops
along each of these paths when We � 0.15. Thus either
the sequence of drops shown by solid lines [Fig. 4(b)] or
the sequence of drops shown by dashed lines [Fig. 4(c)],
but not both, may be observed when We � 0.15.

Figure 2 shows several other zones where hysteresis oc-
curs. Zones A, B, C, E, G, J , K , and L are those in which
the paths followed by the dynamics are unique for each
We encountered in them; i.e., hysteresis is absent in these
zones. In zone I a response opposite to that encountered
in zone D is obtained; i.e., the response is period-2 for
increasing We and is period-1 for decreasing We. Zones
F and H differ from others in that there are two differ-
ent paths for the drops to follow when We is decreased
in a sweep mode. In zone F, there is a small hystere-
sis loop consisting of two distinct period-2 responses. In
zone H, the system may exhibit either a period-1 or a
period-2 response as We is decreased depending on the line
of approach. Zone J shows the return to a simple dripping
regime with period-1 response, while zone K results from
a period doubling bifurcation from zone J . From Fig. 2
it can be noted that the response of the system returns to
period-1 when We * 0.24 in zone L. System S jets when
We * 0.26.

According to the foregoing results, dripping from a
leaky faucet can exhibit fascinating behavior ranging from
expected to unexpected. It has been shown here for the first
time experimentally or theoretically that hysteresis can oc-
cur in a dripping faucet. Using time interval data, previous
studies have demonstrated that several routes to chaos exist
in a dripping faucet [23]. Figure 1(d) shows a time return
map, predicted by the 1D model, that resembles a strange
attractor. This map corresponds to a system less viscous
than system S, such that Oh � 0.01 and G � 0.5 when
We � 0.19. By contrast, no chaotic regimes have been
found for system S. Ongoing work in our laboratory [24]
has shown that when Oh � O �1�, the system transitions
directly from period-1 response to jetting as We increases.
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