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We propose a simple model for the chaotic drip-
ping of a faucet in terms of a return map constructed by
analyzing the stability of a pendant drop. The return
map couples two classical normal forms, an Andronov
saddle-node bifurcation, and a Shilnikov homoclinic bi-
furcation. The former corresponds to the initiation of the
instability when the drop volume exceed a critical value
set by the balance between surface tension and gravity,
while the latter models the global reinjection associated
with pinch-off that eventually return the drop to a state
close to its original unstable configuration. The results
obtained using the return map are consistent with those
of numerical simulations of the governing PDEs and prior
experiments, and show periodic and quasi-periodic drip-
ping at low and high flow rates, and chaotic behavior at
intermediate flow rates.

Drop formation is an everyday phenomena
with a scientific history going back atleast to Mari-
otte [1] who noticed that a stream of water flowing
from a faucet breaks into drops, and attributed it to
gravity and external forces. Much later the studies
of Young [2] and Laplace [3] lead to the realization
that surface tension as the destabilizing agent. Ever
since then, and through recent times the subject has
been active, with current interests centered around
singularity formation in free-surface flows [4]. Here
we focus on the aspect of the problem that provided
a stimulus to early studies on chaos [5], the transi-
tion to chaotic dripping in a faucet. Although the
subject of many experimental and theoretical papers
(see [6] for a recent example along with a review of
earlier work), nearly all work in this area treats the
system as a relaxation oscillator using a phenomeno-
logically motivated equation, instead of treating the
hydrodynamics in a rational way. A recent exception
is the work of Fuchikami et al [7], who simulated the
chaotic behavior using an asymptotically correct hy-
drodynamic model. Our aim is to provide a minimal
model based on fluid mechanics to explain the dy-
namics of a dripping faucet.

In order to do so, we first consider the case
when the flow rate is very small, so that a drop re-
mains attached to the faucet until its volume ex-
ceeds a threshold Vc. For a narrow faucet of radius
R, drops with a volume less than Vc are stable and
axisymmetric [8,9]; for wider faucets, one can have
non axisymetric stable drops [10], leading to more
complex dripping patterns, but we will not consider
this case here. The shape of an axisymmetric pen-

dant drop is determined by the minimizing the sum
of its gravitational and surface energy subject to the
constraint of constant volume, and leads to the well-
known Laplace-Young equation [9]. Equivalently,
one may write down an equation for the balance of
vertical forces, along with kinematic equations for
the shape of the interface, leading to the following
system of dimensionless ODEs
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Here the variables r,s,θ and z are defined in FIG. 1.a
for a fluid drop with surface tension Γ, and density
ρ in a gravitational field g. To make the equations
dimensionless, we have scaled all lengths by the cap-
illary length l0 =

√
Γ/gρ, all masses by m0 = ρl30

and pressure by P0 =
√

ρΓg. For later use, we scale
all times by to = (Γ/ρg3)1/4. For water at 200C,
l0 = 0.27cm, m0 = 0.020g, P0 = 270dyn/cm2, t0 =
0.017s.

The boundary conditions at the bottom of the
drop are r(0) = 0, θ(0) = π/2 and z(0) = Pb where
Pb is the unknown hydrostatic pressure at the bot-
tom of the drop. Choosing a value for Pb, we inte-
grate (1) as an initial value problem till we satisfy
the boundary condition r = R (we choose R = 1;
in dimensional terms R = l0), and use a shooting
method to determine Pb for a given drop volume
V =

∫
πr2dz. Of the various shapes of static pen-

dant drops that exist for a given volume, shown in
FIG. 1.b, only the branch starting at the origin with
a positive slope is stable, so that there is a criti-
cal drop volume Vc at which the weight of the drop
just balances the force due to surface tension. The
resulting instability when V > Vc results from the
“collision” of two stationary solutions, a stable one
and an unstable one, and corresponds to a saddle-
node bifurcation, as we shall see.

To understand the dynamics of this instabil-
ity, we consider the hydrodynamical equations lin-
earized about the stationary pendant drop. Since
much of the behavior during dripping involves the
dynamics of slender liquid jets, we use a lubrication
model for the fluid, embodied in a Lagrangian ap-
proach. The inherent assumptions in this are the
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following: (i) the drop remains axisymmetric during
its motion, (ii) the radial component of the fluid ve-
locity is negligible compared to the axial component
which depends on z alone, (iii) there is no overturn-
ing of the interface which is assumed to be a graph in
the axial variable z. These assumptions are asymp-
totically valid for slender drops of large viscosity,
but recently simulations of the resulting low-order
equations have shown good agreement with experi-
ments even for low viscosity drops [11]. The above
assumptions also imply that there is no exchange
of fluid between neighboring horizontal slices of the
drop, so that each slice may be treated as a La-
grangian variable [7]. This description is equivalent
to earlier one-dimensional Eulerian lubrication the-
ories [4]. Explicitly, the volume between the bottom
of the drop z(0, t) = zb(t) and z is

ξ(z, t) =

∫ zb(t)

z

πr(ζ, t)2dζ (2)

In terms of the Lagrangian variable ξ(z, t), we can
write the various energy terms for the system as
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2
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(3)

FIG. 1. a) Definition of the variables characterizing
the drop. b) The dimensionless length z(0) versus the
dimensionless volume V of the drop. The dashed line
corresponds to unstable stationary drops, the solid line
to the stable drops. Vc ≈ 5.20 is the maximum volume
of a stationary pendant drop. On the right we show
the corresponding eigenvalue spectrum for some repre-
sentative points close to Vc; the onset of the saddle-node
bifurcation is shown in (2), and the leading eigenvalues
are λ1 = 0, λ2 = −0.017 ± i.3.468.

Here Ekin is the kinetic energy, Ug the poten-
tial energy, and UΓ the surface tension energy, ξ0(t)
is the total volume of the drop at the time t, and

(.)′ = ∂/∂ξ. Then we can write the Lagrangian of
the system as L = Ekin − Ug − UΓ. The effect of
viscosity is expressed in terms of the Rayleigh dissi-
pation function

2R = Ėkin = −3η

∫ ξ0(t)

0

(
v′(ξ, t)

z′(ξ, t)

)2

dξ (4)

Here η is the dimensionless viscosity in units of
η0 = (ρΓ3/g)1/4 (η0 = 1.627g/cm.s, η = 0.002 for
water), v = ∂z/∂t, and Ėkin is dissipation rate in
purely extensional flow. Then, Lagrange’s equation
for the system is given by d

dt
∂L
∂v = ∂L

∂z + ∂R
∂v . For

computational facility, we discretize the Lagrangian
spatially, characterizing each slice of fluid by the po-
sition of its center of mass zi, velocity vi = ∂zi

∂t and
mass mi, so that for a drop sliced into N disks, we
get an N dimensional dynamical system [7], gov-
erned by the equations

d

dt

∂L
∂vi

=
∂L
∂zi

+
∂R
∂vi

, i = 1, N (5)

We linearize (5) in the neighborhood of the sta-
tionary solutions of (1) and evaluate the spectrum
ωi, i = 1, N of the resulting system. When V < Vc,
Re[ωi] < 0, so that these drops are stable; as V ≈ Vc

two complex conjugate eigenvalues become real and
then one of them reaches the imaginary axis when
V = Vc. Thus the stationary drop loses its stability
by a saddle-node bifurcation, as can be seen in FIG.
1.

In terms of the velocity v0 of the fluid inside
the faucet of radius R, the time scale for the for-
mation of a pendant drop is τf ∼ R

v0
. Once the

volume of the pendant drop is Vc, it forms a neck
which quickly narrows down until a droplet pinches
off in finite time. This process occurs in a time
τn ∼

√
ρR3/Γ [4], independent of the flow rate, and

much more rapidly than the time for a drop to form.
After a droplet pinches off, the remaining liquid re-
coils due to capillary forces, oscillating with a char-
acteristic frequency f =

√
8Γ/3πρV [12], where V

is the volume of the remaining droplet. Since the
volume of the pendant drop grows steadily due to
the constant flow rate, this frequency gradually de-
creases even as the oscilllations are damped out by
viscous fluid motions at a rate 1/τd ∼

√
2πfη/V1/3.

For small flow rates, these oscillations are completely
damped out by the time the pendant drop attains
the critical volume Vc, so that in this case, droplets
are emitted from the faucet with a constant peri-
odicity. As the flow rate is increased, these par-
tially damped oscillations modify the onset of the
instability via the saddle-node bifurcation. Equiva-
lently, the dimensionless ratio of the filling time to
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the damping time τn/τd advances or delays the on-
set of necking and is responsible for the variation
of the periodicity (or lack thereof) of drop emission.
For example, as the flow rate is gradually increased,
the constant periodicity “drop-drop” gives way to a
“drop-drip” scenario via a period-doubling bifurca-
tion as follows. Once the pendant drop reaches the
critical volume Vc, a large droplet “drops” leading to
a highly elongated residual filament. If the flow rate
is large enough so that the oscillations are not com-
pletely damped out, the next droplet will become
unstable when V < Vc, so that it “drips”, leading
to a smaller residual filament whose oscillations will
be damped out much sooner, thereby (possibly) al-
lowing the pendant drop reach its maximum size Vc

before it “drops”, and so on.

FIG. 2. Reconstruction of the flow by the time de-
lay method, obtained by solving (5) numerically. The
radius of the drop is probed at the location z = 0.5
and is always continuous. The parameters used for
the simulation correspond to a fluid 10 times more vis-
cous than water flowing out of a faucet of diameter
R = 1 at a flow rate ε = 0.01 (in dimensional terms,
R = 2.6mm, ε = 0.015cm3/s). We observe a long excur-
sion followed by a damped oscillations before the orbit
returns to the neighborhood of the saddle point.

To build a low-dimensional dynamical system
evoking the essence of (5), we solve it numerically
over a time much longer than the time for the pinch
off of a single droplet, while interrogating it judi-
ciously. Since we need an order parameter that is
continuous through the pinch off process, we cannot
use the volume and the length of the drop which do
not satisfy this criterion. However the radius of the
drop at an appropriate location suffices and allows us
to rebuild phase space by the delay method [13]. In
FIG.2, we show such a reconstruction, and observe
that there are two qualitatively different regions: a
large excursion corresponding to the dynamics that
leads to the pinch-off of a droplet, and a much more
compact region corresponding to the damped oscil-
lations following a pinch-off event, that eventually

leads the orbit to the neighborhood of the saddle-
node bifurcation whence it escapes again. Based on
this, we construct a simple model which describes
an oscillatory damped mode and a saddle-node bi-
furcation in the spirit of the Andronov original paper
[14].

{
∂tU = (iω − λ)U
∂tZ = ε + Z2 (6)

where U = X + iY is the amplitude of the damped
oscillatory mode with eigenvalue iω−λ, with λ > 0,
and ε > 0 is the saddle-node bifurcation parame-
ter. In the context of a hydrodynamical theory, U, Z
constitute a Galerkin approximation of the complete
dynamics, ω and λ are the scaled frequency and the
damping rate (in units of 1/t0) of the oscillating pen-
dant drop, while ε is the scaled flow rate (in units
of l30/t0). Explicitly, this dynamical system can be
written in terms of a return map [15] around a paral-
lelopiped of length (A, A,B), centered at the saddle
point, as shown in FIG. 3. In light of FIG. 2, the
details of the complexe dynamics of pinch-off and re-
coil of a droplet are unimportant. Therefore, we use
a simple model for the global reinjection flow via a
rigid rotation, e.g. Xi+1 → Xi+1,Yi+1 → Zi+1. For
the damped oscillations of the drop, we construct a
mapping from the plane Y = A to the plane Z = B,
i.e. (Xi, A,Zi) → (Xi+1, Yi+1,B). Together, they
yield the Poincaré map

FIG. 3. A parallelopiped around the saddle point in
phase-space is used to construct the mapping from the
plane before the bifurcation to the plane after the bi-
furcation. A simple rigid rotation is used to model the
global reinjection process associated with the complex
dynamics of pinch-off, recoil and growth.





τi =
arctan(B/

√
ε) − arctan(Zi/

√
ε)√

ε
Xi+1 = (Xi cos(ωτi) − A sin(ωτi))e

−λτi

Zi+1 = (Xi cos(ωτi) + A sin(ωτi))e
−λτi

(7)
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Numerical simulations of (7), shown in FIG.
4 reveal that for small flow rates all the orbits con-
verge towards a fixed point which describes a peri-
odic dripping process. The same phenomenon ap-
pears for large flow rate but it represents a transi-
tion from dripping to jetting [16]. For intermediate
flow rate, chaotic behavior is observed. In this latter
regime, a typical attractor associated with the return
map is shown in FIG. 4, agreeing qualitatively with
the results of experiments [11,18].

FIG. 4. A phase diagram corresponding to the
changes in the dripping behavior as a function of the flow
rate ε, computed using the return map (7). Very similar
diagrams are obtained by solving (5) numerically. For
small and large flow rates, the dripping is periodic. For
intermediate flow rate, the dripping may be chaotic (the
graphe show the time interval between two consecutive
drops Tn+1 versus the previous such interval Tn). The
transition to chaos occurs by either a period doubling bi-
furcation, e.g. ε = 0.01, or the result of boundary crisis,
e.g. ε = 0.0125. For this simulation, the scaled damping
rate λ = .17, and the scaled frequency ω = 3.46.

The structure of the map is self explanatory.
As ε increases, the observed chaos is connected with
the formation of a Smale horseshoe with two sym-
bols. Depending on the value of other parameters
such as Zi and Xi, for larger ε the attractor takes
the appearence of a spiral, corresponding to a horse-
shoe with more symbols. The transition to chaos
occurs either by succesive period doubling bifurca-
tions or by the collision between a chaotic attractor
and an unstable fixed point via a a boundary crisis
and is responsible for the sudden changes in the at-
tractor [17], similar to that observed in experiments
[18,11].

We conclude with a brief discussion of our re-
sults. Based on the study of the stability of pendant
drop and numerical simulations of a lubrication-type

model for the hydrodynamics of a dripping faucet,
we constructed a simple return map characterizing
the Andronov-Shilnikov bifurcation that accounts
for the various experimentally observed behaviors
of a dripping faucet, such as the different transi-
tions, the shape of the attractor etc. Possible im-
provements in the model include a systematic low-
dimensional Galerkin projection of the drop dynam-
ics to better estimate the frequency ω and damping
rate λ of the oscillatory mode, and a more realistic
model for the reinjection process. In a more gen-
eral context, this model sets up the framework for a
study of the problem of chaotic nucleation in differ-
ent dynamical systems.
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