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Abstract 

Dimensional complexity (estimated correlation dimension) was measured for two topographic EEG time series: (a) the 
time evolution of global field power (GFP) and (b) the time evolution of sequential dissimilarity (SQD) for resting, 
eyes-closed and eyes-open data. Eyes-closed GFP and eyes-closed/open SQD all had an element of nonlinearity in their 
dynamics as evidenced by increased dimensional complexity associated with the phase-angle randomization, Gaussian 
surrogate-data procedure. However, none of the three gave any evidence of being deterministic chaotic processes. Eyes-open 
GFP dimensional complexity could not be distinguished from a linear-stochastic process. 
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1. Introduction 

This manuscript is part of a series investigating 

the nonlinear dynamical properties of the human 

EEG. In the first [[I], see also [2]], the technique of 
dimension estimation was applied to a set of resting, 
eyes open and eyes-closed EEG recorded from nor- 
mal young subjects. Dimension estimation provides a 
measure (estimated correlation dimension) of the 
complexity of a system’s dynamics reconstructed in 
state space by the Takens method of delays. When 
used as a relative EEG measure comparing groups or 
effects of interest, the dynamically more neutral term 
dimensional complexity is preferred. 

In [l], a property termed satlrrarion (a leveling 
off of dimensional complexity with an increase in 
the dimension of the state space in which the time 

series is embedded) was found to be good at certain 
sites on the scalp (data were recorded from the 
nineteen lo-20 loci). This was interpreted as indicat- 
ing that the EEG at these loci was produced by 
low-dimensional, deterministic chaos of the strange- 
attractor type (in the rest of the manuscript, addition 
of the phrase ‘of the strange-attractor type’ to the 
word ‘chaos’ will be understood). 

The second manuscript [3] was motivated by fur- 
ther developments in the application of nonlinear 
dynamics to time series data. Specifically, it was 
shown that 1 /f-like, linearly correlated (‘colored’) 
noise will ‘fool’ dimension estimation algorithms in 
that good saturation is obtained from what is in fact 
a stochastic system. Thus, good saturation, although 

* Corresponding author. 
’ Arkansas School for Math and Sciences, 200 Whittington 

Avenue, Hot Springs, AK 71901, USA 

0167-8760/96/$15.00 Copyright 0 1996 Elsevier Science B.V. All rights reserved. 
PII SO167-8760(96)00059-l 



190 W.S. Pritchard et al./ International Journal of Psychophysiology 24 (19961 189- 195 

a necessary condition for inferring low-dimensional 
chaos, is not a sufficient condition. The demonstra- 
tion of deterministic chaos and/or nonlinearity 
(either deterministic or stochastic) requires an addi- 
tional procedure termed surrogate-data testing. 

In surrogate-data testing, dimension estimation is 
applied to the original time series. The series is then 
fast Fourier transformed (‘FFTed’), the phase angles 
are randomized, and the data reversed FFTed. The 
result is a time series having the same power spec- 
trum as the original, but from which nonlinearity has 
been removed - the surrogate series is linear noise 
regardless of the nature of the original series. Dimen- 
sion estimation is then applied to the surrogate se- 

ries. If the original series was in fact a linear noise, 
then there is no change in the results of the dimen- 
sional analysis. If the original series was nonlinear, 

then there is an increase in estimated dimension. 
Finally, if the original series was low-dimensional 
chaos, then there is both an increase in dimension 
estimates along with good saturation of the original 
data. 

Using surrogate-data testing, we found that the 
EEG data originally analyzed in [l] had a significant 
element of nonlinearity, but did not represent low-di- 
mensional chaos. This finding was subsequently 
replicated in a different group of subjects [4]. These 
findings do not mean that our EEG data were 
stochastic in the strong sense of the word (approach- 
ing infinite dimension), but rather that the dimension 
of our data was at least higher than the ability of 
dimension estimation to resolve given the limited 
size of our EEG segments (which consisted of 8 s 
digitized at 128 Hz for a total of 1024 data points). 

In this manuscript, we apply dimension estimation 
to EEG topography. Although on a locus by locus 
basis, individual EEG time series were nonlinear but 
not chaotic [3,4], we sought to examine the possibil- 
ity that emergent chaotic dynamics govern the time 
evolution of EEG topography. Alternatively, it may 
be the case that emergent stochastic linearity governs 
the time evolution of EEG topography even if the 
dynamics of individual channels is nonlinear. Di- 
mensional complexity was computed for two topo- 
graphic time series: (a) the time evolution of global 
field power (GFP) and (b) the time evolution of 
sequential dissimilarity (SQD). 

I. I. Global field power (GFP) 

GFP is a measure, at a given instant in time, of 
the ‘hilliness’ of the EEG across the scalp, that is, 
the momentary electric strength of the mapped EEG 
‘landscape’ [5]. It represents the spatial root mean 
square of all local voltages measured relative to the 
average reference (and thus is independent of the 
actual reference employed during recording). Con- 
sider a set of MiEEG channels each consisting of N, 
data points. The voltage V of channel i measured at 
point j is actually the difference in electrical poten- 
tial between the ‘active’ electrode on the scalp and 
the ‘reference’ electrode (in our case, on the tip of 

the nose>: 

svI., = vl.; - VTeference.j 

The average reference transformation Ai,j is com- 
puted as follows: 

Ai,j= ~~.i- [l/N] ~ ‘V,.,, 
i= I 

The average reference produces a rejection of the 
time-varying offset (spatial DC component) mea- 
sured between the (arbitrarily chosen) recording ref- 
erence and the ‘active’ electrode loci on the scalp [5]. 
This results in a ‘virtual’ reference that exists, in 
essence, ‘everywhere’ in space. Once the data have 
been transformed to the average reference (M trans- 
formed to A), GFP is computed as 

[o~,~!,]“z 

1.2. Sequential dissimilarity (SQD) 

SQD is the global dissimilarity between two 
temporally successive topographic maps. Global dis- 
similarity is in turn the GFP of the difference map 
obtained by subtracting two maps normalized to 
unity GFP [5]. For average-reference map A, the 
normalized map is X = A/[GFP(A)]. The global dis- 
similarity D between X and another normalized map 
Y is given by 

i/2 

(l/N) 5 (X, - K 
n=l 1 
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Because of the normalization, global dissimilarity 

does not reflect differences in map amplitude, only 
differences in map shape. It thus provides a measure 
of ‘topographic instability’, and is inversely related 

to the spatial correlation between two maps (see [6], 
Appendix 1, for evidence). Although times of low 
instability/high stability (low SQD) are usually as- 
sociated with times of high GFP, one is not necessar- 

ily the inverse of the other (cf. C51, Fig. 3a). 

2. Method 

The EEG data analyzed were those originally 
collected by Pritchard [7]. Briefly, resting EEG data 
were recorded from the 19 loci of the international 
lo-20 system under two conditions (eyes-closed and 

eyes-open, fixating), with each set of eyes- 
closed/open recordings being repeated four times 
(four blocks). Twelve non-smoking subjects having 
no history of neurologic or psychiatric disorder par- 
ticipated after giving informed consent (5 females, 7 
males; average age 27.75, SD 4.25, range 19-34). 
Subjects were tested in the morning in a soundproof, 
electrically shielded room while seated in a comfort- 
able chair. Sn electrodes were attached to the scalp 
loci, the tip of the nose (reference), and the forehead 
(ground). On-line high- and low-pass filter settings 
of 0.3 and 30 Hz (- 12 dB/octave) were employed 
with a sampling rate of 128 Hz. All electrode 
impedances were < 3 klR. For each subject, a con- 
tinuous, 8-s, 19-channel EEG set judged by visual 
inspection to be in all channels free of electroocular 
(EOG) and movement artifacts, and to contain mini- 
mal electromyographic (EMG) activity, was avail- 
able for each eyes-closed/open X block combina- 
tion (the first artifact-free 8-s set from 120 total 
seconds of data). 

3. Results 

3.1. Global @field power (GFP) 

3. I. I. Dimensional complexity 
For each EEG record, GFP was computed at each 

time point as outlined in the introduction. This was 
done using 15 of the 19 recording electrodes (loci 

Fpl, Fp2, T3, and T4 were omitted because of their 

association with artifacts). The result was, for each 
EEG record, a 1024-point GFP time series, from 
which dimensional complexity was estimated for 
embedding dimensions 4-16 by 2s using the 
Takens-Ellner method (see [8], for details). Each 
GFP time series was also submitted to the Gaussian 
amplitude-adjusted surrogate-data procedure [9], with 
dimensional complexity again being estimated for 
the surrogates (Gaussian surrogates not only test 
against the null hypothesis of a linear-stochastic 
process, but also control for a static, nonlinear mea- 
surement transformation *). 

The GFP dimensional complexity data were sub- 
mitted to a four-way, within-subjects analysis of 
variance (ANOVA; in all ANOVAs results reported, 
Greenhouse-Geisser-corrected p-values are em- 
ployed where appropriate). The four variables were 
eyes closed/open X4 blocks of recording X origi- 
nal/surrogate data X embedding dimension. 

The main effect of eyes closed/open was signifi- 
cant [ F(l,l 1) = 5.54, p = 0.03821, with GFP dimen- 
sional complexity being lower for than eyes-closed 
condition (3.806) than for the eyes-open condition 
(4.067). The main effect of original/surrogate data 
was also significant [ F(l, 11) = 7.63, p = 0.01851, 
with GFP dimensional complexity being signficantly 
increased by the surrogate-data procedure (from 
3.899 to 3.974). Finally, the main effect of embed- 
ding dimension was significant [ F(6,66) = 176.45, 
p < O.OOOl], with GFP dimensional complexity in- 
creasing with increasing embedding dimension. All 

’ Gaussian surrogates [9] consider the possibility that the ‘true’ 

EEG xt is transformed into the observed EEG v, by a static 

nonlinear filter h() [v, = h(x,)]; the filter is static because vt 

depends only on the current value of xt and not on derivatives or 

past values]. First, a time series g[t] having an independent, 

identical Gaussian distribution is formed. This series is then 

re-ordered so that its ranking agrees with the original EEG time 

series (if v[t = i] is the nth smallest EEG amplitude, then g[t = i] is 

the nth smallest Gaussian amplitude). Thus, g[t] is a times series 

that ‘follows’ v[t] but has a Gaussian amplitude distribution. The 
Gaussian series is then Fourier transformed, phase-angle shuffled, 
and reverse Fourier transformed to form g’[t], a surrogate of the 
Gaussian series. The final surrogate data set is then formed from 

the original series v[t] by re-ordering it so that it follows g’[t] in 
the sense that ranks agree. 
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Fig. 1. GFP dimensional complexity: the eyes close/open X 

original/surrogate two-way interaction. The surrogate-data proce- 

dure produced an increase only for the eyes-closed data. 

of these main effects were qualified by the interac- 
tions presented below. 

The interaction of original/surrogate data with 
eyes closed/open was significant [ F( 1 , 11) = 29.16, 
p = 0.0002], as illustrated in Fig. 1. As indicated in 
the figure, the increase in GFP dimensional complex- 
ity associated with the surrogate-data procedure was 
significant only for the eyes-closed condition. 

The interaction of original/surrogate data with 
embedding dimension was also significant [ F(6,66) 
= 12.65, p < O.OOOl]. This interaction is illustrated 
in Fig. 2, which indicates that the increase in GFP 
dimensional complexity associated with the surro- 
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Fig. 2. GFP dimensional complexity: the original/surrogate X 

embedding dimension interaction. The original versus surrogate 

difference appears to grow with increasing embedding dimension. 
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Fig. 3. GFP dimensional complexity, eyes-closed condition: com- 

paring this figure with Figs. 2 and 4 indicates that the pattern seen 

in Fig. 2 (original versus surrogate difference increasing with 

increasing embedding dimension) was completely a function of 

the eyes-closed data. This is consistent with the interaction dis- 

played in Fig. 1. 

gate data procedure began at embedding dimension 
10 and thereafter increased with increasing embed- 
ding dimension. However, this two-way interaction 
was overshadowed by a significant three-way inter- 
action among eyes closed/open, original/surrogate 
data, and embedding dimension [ F(6,66) = 11.66, 
p < O.OOOl]. As illustrated in Figs. 3 and 4 (and 
consistent with Fig. I), the pattern seen in Fig. 2 was 
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Fig. 4. GFP dimensional complexity, eyes-open condition: com- 
paring this figure with Figs. 2 and 3 indicates that the pattern seen 

in Fig. 2 (original versus surrogate difference increasing with 
increasing embedding dimension) was completely a function of 

the eyes-closed data. This is consistent with the interaction dis- 

played in Fig. 1. 
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driven entirely by the eyes-closed data - the surro- 
gate data procedure did not systematically affect 
GFP dimensional complexity in the eyes-open condi- 
tion. 

3.1.2. Saturation slope 
Figs. 2-4 indicate no evidence of saturation in the 

GFP dimensional complexity data - GFP dimen- 
sional complexity did not level-off or even begin to 
level-off with increasing embedding dimension. To 
assess subtle effects on the saturation properties of 
GFP dimensional complexity, the slope of dimen- 
sional complexity as a function of embedding dimen- 
sion across dimensions 6-16 was computed for each 
EEG record as well as its random Gaussian surro- 
gates, with increasingly positive slope indicating in- 
creasingly poorer saturation (4 was omitted because 

the ‘jump’ from 4 to 8 appeared disproportionate in 
the eyes-open data). The GFP saturation slope data 
were submitted to a three-way, within-subjects 
ANOVA (eyes closed/open X block X original/ 
surrogate data). 

The main effect of original/surrogate data was 
significant [ F( 1,ll) = 48.58, p < O.OOl], with satu- 
ration being poorer in the surrogate data (slope = 
0.141) than in the original data (slope = 0.120). This 
main effect was qualified by a significant two-way 
interaction between eyes closed/open and original/ 
surrogate data [F(l,ll> = 7.88, p < 0.0171]. This 
interaction is illustrated in Fig. 5, which indicates 
that the surrogate-data procedure increased GFP sat- 
uration slope only in the eyes-closed condition (a 
pattern that can be seen in Fig. 3). The three-way 
interaction among eyes closed/ open, original/sur- 
rogate data, and block was also significant [ F(3,33) 
= 7.48, p = 0.0013]. This interaction produced no 
systematically interpretable pattern, and is not illus- 
trated. 

3.2. Sequential dissimilarity (SQD) 

3.2. I. Dimensional complexity 
For each EEG record, SQD was computed at each 

time point as outlined in the introduction. This was 
again done using the same 15 loci used for comput- 
ing GFP. The result was, for each EEG record, a 
1023-point SQD time series, from which dimen- 
sional complexity was again estimated for embed- 
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Fig. 5. GFP saturation slope: the eyes close/open X 

original/surrogate two-way interaction. Consistent with the previ- 

ous figures, saturation slope was increased by the surrogate-data 

procedure only in the eyes-closed condition. 

ding dimensions 4- 16 by 2s. Each SQD time series 

was also submitted to the random Gaussian surro- 
gate-data procedure, with dimensional complexity 
again being estimated for the surrogates. The SQD 
dimensional complexity data were then submitted to 
an ANOVA equivalent in design to that used to 
analyzed GFP dimensional complexity. 

The main effect of original/surrogate data was 
significant [ F( 1,1 1) = 31.92, p < O.OOOl], with the 
surrogate data procedure producing an increase in 
SQD dimensional complexity from 4.554 to 4.743. 
The main effect of embedding dimension was also 
significant [F(6,66) = 543.15, p < 0.00011, with 
SQD dimensional complexity increasing with in- 

creasing embedding dimension. Both of these main 
effects were qualified by a significant interaction 
between original/surrogate data and embedding di- 
mension [ F(6,66) = 11.85, p = O.OOOS]. This inter- 
action is illustrated in Fig. 6, which indicates that the 
surrogate data procedure increased SQD dimensional 
complexity for all embedding dimensions except 4. 

3.2.2. Saturation slope 
As for GFP dimensional complexity, there was no 

apparent saturation in the SQD dimensional com- 
plexity (Fig. 6). As was done for GFP dimensional 
complexity, saturation slope was computed for SQD 
dimensional complexity, and the results submitted to 
an ANOVA equivalent in design to that used to 
analyzed GFP dimensional complexity. No signifi- 



194 W.S. Pritchard et al./Jntemational Journal qf Psychophysiology 24 (19961 189-195 

. ORIGINAL DATA 
0 GAUSSIAN SURROGATE DATA 

8.2 - 
5.0 - 
5.B - 

6 fj i:: - 
3 2 5.2 - 

B 
z 6.0 - 
p 4.0 - 

8 $8 4.6 - 
? h -1 4.4 - 
5 
tj 

2 4.2 - 

B 
t; 4.0 - 

i 

g2..a - 
; 3.6 - 
3.4 - 
3.2 - 
3.0 - 

4 8 a 10 12 14 16 
EMBEDDING DIMENSION 

Fig. 6. SQD dimensional complexity: the original/surrogate X 

embedding dimension interaction. The original versus surrogate 

difference appears to be constant for embedding dimensions 6 and 

higher. 

cant effects were obtained. As can be seen in Fig. 6, 
other than the change from embedding dimensions 4 
to 6, the slopes for original and surrogate data are 
virtually identical. 

3.3, Relation between GFP dimensional complexity 

and SQD dimensional complexity 

As outlined in the Introduction, times of low SQD 

are usually associated with times of high GFP, but 
one is not necessarily the inverse of the other. Simi- 
larly, their respective dimensional complexities also 
appear to be moderately related. For the original 
data, GFP dimensional complexity was correlated 
+ 0.640 with SQD dimensional complexity. 

4. Discussion 

The time evolution of both ehe eyes-closed ‘hilli- 
ness’ of resting EEG topography (GFP) and eyes- 
closed and eyes-open sequential changes in the 
‘shape’ of EEG topography (SQD) were all found to 
have an element of nonlinearity. For all three, surro- 
gate data produced significant increases in dimen- 
sional complexity, although the relative magnitude of 
the increases was not large. In this manner, they 
resemble the dynamical properties of the same EEG 
data analyzed as voltage time series on a locus by 

locus basis [3,4]. Thus, they do not represent an 
‘emergent nonlinear element’ only seen when the 
topographic field is examined. In contrast, the time 
evolution of eyes-open ‘hilliness’ could not be dis- 
tinguished from a linear-stochastic process (there 
was no evidence of saturation and no change with 
surrogate data). Thus, the eyes-open GFP time series 
represents an ‘emergent linearity’ aspect of the EEG 
not seen on a locus-by-locus basis. 

One may speculate that the nonlinear element of 
the time evolution of ‘hilliness’ in the eyes-closed 
data may be a function of the occipital, eyes-closed 
alpha rhythm, and that in the absence of the alpha 
rhythm, resting EEG ‘hilliness’ evolves as a topo- 
graphically emergent linear-stochastic process. This 
notion was born out by a correlation of +0.577 
between the increase in GFP dimensional complexity 

associated with the surrogate-data procedure and av- 
erage alpha power in each EEG (alpha power latter 
previously computed in [7]). 

There were also differences between eyes-closed 
GFP and SQD in their nonlinear properties: for 
eyes-closed GFP, surrogate-data differences ap- 
peared to grow with increasing embedding dimen- 
sion (Fig. 3) - hence the difference in saturation 
slope between the original data and the surrogate 
data. In contrast, original/surrogate differences in 
SQD dimensional complexity were relatively con- 
stant across embedding dimensions. The theoretical 
implications of these differences are unclear, as they 
have not (to our knowledge) been addressed by 
theoreticians in the area [9]. We do note that the 
increase in GFP dimensional complexity with surro- 
gate-data testing was negatively correlated with aver- 
age locus-by-locus dimensional complexity 
(-0.4001, that is, if the individual-loci EEGs are of 
low complexity, there tends to be a larger increase in 
GFP dimensional complexity when the surrogate-data 
procedure is applied. In contrast, the increase in 
SQD dimensional complexity with surrogate-data 
testing was unrelated to locus-by-locus dimensional 
complexity (correlation of + 0.045). 

Finally, no evidence of low-dimensional chaos 
was found for either measure of EEG topography: 
for both measures under both eyes-closed and eyes- 
open conditions, dimensional complexity of the orig- 
inal data did show even a trend toward saturating. 
Thus, the evolution of EEG topographic measures 



W.S. Pritchard et al./Intemational Journal of Psychophysiology 24 (1996) 189-195 195 

under testing conditions would appear to be best 
categorized as stochastic processes, with three of the 
four having an element of stochastic nonlinearity. 
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