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Abstract. An  advanced  undergraduate  experiment  on 
the  chaotic  behaviour of a  dripping  faucet is presented. 
The  experiment  can  be  used  for  the  demonstration of 
typical  features of chaotic  phenomena  and  also  allows  the 
advanced  physics  student to learn  about  the  use of 
microcomputers  as  data-taking  devices. For convenience 
a brief introduction  to  the  basic  concepts of non-linear 
dynamics  and to the  period-doubling  route to chaos  are 
included. 

1. Introduction 
Chaodynamics is a  recent  area of research  (Ott 
1981, Ford 1983, Bai Lin 1984,  Jensen  1987);  even 
its name is recent  (Andrey  1986).  It  concerns  the 
occurrence of complex  and  seemingly  random  pheno- 
mena in non-linear  but  otherwise  deterministic 
systems.  Common  examples of this  behaviour 
include  the  results of tossing  a  coin, or the  swirling 
paths of leaves  falling  from  a  tree on a windy day. 
Similar aperiodic  phenomena  have  been  observed in 
an  impressive  number of experimental  systems, 
even in some  previously  thought  to  be  very well 
understood,  as is the  case of the  driven  pendulum 
(Koch et a/ 1983).  Electrical,  optical,  mechanical, 
chemical,  hydrodynamical  and biological systems 
can all exhibit  the  kind of dynamical  instabilities  that 
produce  chaotic  behaviour  (Jensen 1987 and  refer- 
ences  therein).  Despite  this,  recent  discoveries in 
the field of non-linear  dynamics  are still not well 
known  to  many  undergraduate physics students. 

With  the  above  ideas in mind, we have  developed 
an  experiment  that  can  be useful for  introducing 
some of the  ideas  and  methods  used in the  descrip- 
tion of non-linear  chaotic  systems.  Our  experiment 
follows the  work of Martien et a/ (1985).  based on a 

Resumen. Se propone  un  experimento  sobre  el 
comportamiento  caotico  del  goteo  en  una  llave  mal 
cerrada.  Este  resulta ut i1  para la demonstracion  de 
caracteristicas  tipicas  de 10s fenomenos  caoticos, y 
permite  que 10s estudiantes  de fisica aprendan  a  usar  una 
microcomputadora  para la toma  de  datos  en un 
experimento.  Hemos  creido  conveniente  incluir  una 
breve  introduccion  a la dinamica  no  lineal y. en 
particular,  a la aparicion  de  caos por sucesivas 
bifurcaciones  subarmonicas. 

suggestion of Rossler  (1977), which shows  that 
drops falling from  a  leaky  faucet  behave  chaotically 
under  appropriate  conditions.  Other  experiments, 
demonstrations or computer  simulations  have  been 
recently  proposed  to  introduce  students  to  the field 
of non-linear  phenomena  (e.g.  Berry  1981, Viet et a/ 
1983. Salas  Brito  and  Vargas  1986, Briggs 1987),  but 
curiously  none of them  deals with liquids  despite  the 
fact  that  much  original  work  has  been  done on such 
systems. In  our experiment  the  students  investigate 
the  dripping  behaviour of a  leaky  faucet,  a  system 
which remains  incompletely  understood  and  hence 
may  still offer  some  surprises  to  both  teachers  and 
students. In this system,  the  students  can  measure 
the  time  interval  between successive drops,  the  drip 
interval-as we,  following  Martien et a/ (1985), will 
call it-as a function of the flow rate of water. 

The  students  become  acquainted with the  con- 
cepts of non-linear  dynamics  (as  deterministic 
chaos,  attractors,  subharmonic  bifurcations,  and  the 
like) by reading  the basic literature,  paying  particu- 
lar  attention  to  the logistic map  (May  1976, 
Feigenbaum 1980, Hofstadter 1981, Schuster  1984, 
Jensen  1987).  Then,  since  many  aspects of this 
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mapping  are  common  to  a  large class of dynamical 
systems  showing  chaotic  behaviour,  they  are  encour- 
aged  to  explore i t  on  a  microcomputer  to  obtain 
firsthand experience of the  behaviour of a  chaotic 
system,  before  they begin the  experiment. 

In  the  following  we  summarise  the  experimental 
set-up  and  show  the  results  obtained so far in our 
laboratories. Since the  dripping  faucet  seems  to 
follow the  period-doubling  route  to  chaos  (Martien 
et a1 1985),  after  a brief introduction  to  illustrate  the 
basic concepts of the  field, in Q 2 we examine in 
some  detail  the logistic map,  a  paradigmatic  exam- 
ple of a  system  following  such  a  route  to  chaos. In 
Q 3  we  describe  our  experimental  device  and  show 
the  return  maps  obtained  from  the  data  collected. 
These  data  confirm  the  existence of a  sequence of 
period  doublings in the  system,  at  least  up  to  period 
four,  before  the  onset of chaos.  Finally,  we  present 
our conclusions in D 4. 

2. Basic concepts and the period-doubling route to 
chaos 
Let us first introduce  some basic notions  and  termi- 
nology of non-linear  dynamics.  Consider  an  harmo- 
nically driven  pendulum: given the  frequency  and 
strength of the  driving  force,  the  motion of the 
system is cpmp!etely determined if the  angle 0 and 
angular  speed 0 of the  pendulum  are  known.  These 
variables  can  be  used as coordinates in the  phase 
space of the  pendulum;  as it  swings back  and  forth, 
the  point  representing its state  moves  along  an  orbit 
in phase  space. For example, if the  strength of the 
driving  force  vanishes,  due  to  the  effect of friction, 
no  matter  how  we  start  its  motion  the  pendulum will 
come  to  rest  at its point of stable  equilibrium  after  a 
number of oscillations.  From  the  point of view of 
phase  space,  the  orbit  spirals  to  the fixed point  at  the 
origin.  The  motion is quite  different  for  non-zero 
values of the  driving  force; in this  case  the  pendulum 
settles  to  a  stationary  oscillation with the  same 
frequency  as  the  external  driving  force.  These  sta- 
tionary  motions in which the  system  settles  after  the 
transients  have  died  out  are  examples of attractors, a 
term which conveys  the  idea  that  many  nearby  orbits 
are  ‘attracted’  to  them.  We  have  mentioned  two 
types of attractors,  a  stable fixed point  and  a  stable 
limit cycle,  but  there  exists  a  more  complicated 
attractor,  the  so-called strange attractors which only 
occur in dissipative  non-linear  systems.  They  cap- 
ture  the  solution of a  deterministic  system  into  a 
perfectly  defined  region of phase  space,  but in  which 
there is a  very  complex  structure  (these  objects  are 
usually fractals)  and  the  motion  shows  every  feature 
associated with random  motion.  Such  behaviour is a 
manifestation of the  very  sensitive  dependence on 
the initial conditions  developed by the  system 
(Ruelle  1980).  The  existence of strange  attractors is 
one of the  fingerprints of chaos i.e. the loss of long- 

term  predictability in a  supposedly  deterministic 
system. 

Various  attractors may be  present in the  long- 
term  behaviour of a  dynamical  system; in most. its 
presence or absence is governed by the  value of a 
single control  parameter. For  example,  the  magni- 
tude  the  driving  force  determines if the  pendulum 
settles  to  a  point  or  to  a limit cycle (or possibly even 
to  a  more  complex  attractor  (D’Humieres e f  a1 
1982)). In the  case of the  dripping  faucet, it is the 
flow rate of water which governs  its  dynamics:  for 
low values of flow. the  dripping is simply periodic 
and  the  system is attracted  to  a  stable fixed point: 
but  for  much  larger  values of flow, strange  attractors 
can  appear.  The succession of stationary  states 
which a  system follows prior of the  onset of chaos, as 
the  control  parameter is varied,  determines  what is 
called the  route to chaos followed by the system 
(Kadanoff  1983).  The  dripping  faucet  seems  to fol- 
low the  period-doubling  route  to  chaos  (Martien et 
a1 1985).  We will explain this route in some  detail 
below. 

The  evolution of a  dynamical  system  can  be  des- 
cribed in either  continuous  time  (a flow) or in 
discrete  time (a mapping).  The  pendulum is a  good 
example of a  system  that  may be described by a flow 
in phase space-although it can  also  be  described by 
a  mapping  (Testa et a1 1982).  On  the  other  hand.  the 
sequence of drip  intervals in a  leaky  faucet is natur- 
ally described by a  discrete  map. For any given value 
of the  dripping  rate.  a  plot of the next drip  interval 
versus  the  previous  one  can give a  clear  idea of its 
dripping  behaviour  and of the  possible  existence of 
attractors.  This is the  representation we use  for  the 
data  obtained in the  experiment  (see figure 5); i t  is 
called  a return or Poincare map.  

As an  illustration of some of these  ideas.  and 
because  they  offer  perhaps  the  simplest  examples of 
systems  undergoing  a  period-doubling  transition  to 
chaos,  we  shall  consider  iterative  processes of the 
form 

where f ( x )  is a  continuous  function  defined in a 
suitable  one-dimensional  interval. Discussing only 
one-dimensional  mappings  as  (1) is not  as  restrictive 
as it may seem  at first.  since  it can  be viewed  as a 
discrete  time  version of a  continuous  but  dissipative 
dynamical  system.  The  dissipative  terms  shrink  the 
volume of phase  space  occupied by the system  until 
it becomes effectively one-dimensional. In this 
instance it can  be  modelled,  at least in its  universal 
qualitative  features, by a  simple  mapping as (1) 
(Collet  and  Eckmann  1980).  In  fact,  such  iterations 
have  been  advocated  frequently  as  qualitative 
models  for  many  complex physical systems,  from  the 
behaviour of a  driven  non-linear  oscillator  (Linsay 
1981,  Testa et a1 1982) to the  onset of turbulence in 
the  Rayleigh-Benard  phenomena (Gollub and 
Benson  1980).  Most of the  results  here  do  not 
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Figure 1. Return  maps,  i.e. plots of x,l-, versus x,, for large  values of n ,  obtained  from  the  logistic  map for different 
values of U :  ( a )  U = 1.5; ( b )  p = 3.3; (c) U = 3.5; ( d )  U = 3.8. This  illustrates  the  dynamics of the  map  up to the  four 
cycle as well as  the  chaotic  attractor  for p > p x .  

depend on the  precise  form of the  function f ( x ) .  as 
long  as it has  a  single  quadratic  maximum  but  to be 
specific we will analyse  the  dynamics of the logistic 
map.  This  mapping is defined by 

f(x) = / d l  - x )  ( 2 )  

where 0+<4 is a  parameter  measuring  the 
strength of the  non-linearity.  With  this  choice  for 
f ( x ) .  equation (1) describes  a  non-linear  and non- 
invertible  map of the  unit  interval  on  itself.  The 
evolution of the  sequence of x, generated by this 
simple equation  exhibits  a  transformation  from  per- 
iodic to  chaotic  behaviour  as  the  control  parameter 
p is increased.  Let us see  how  this  occurs.  The 
behaviour of the  sequence of iterates is trivial  when 
p = 0: for  every  initial  value x,, all the  iterates  are 
zero.  We  can say then  that  the  solution  quickly 
reaches  an  attractor,  the  single  point x=O; this is 
called a  period-one  cycle,  orbit or attractor.  For 
values ofp between 0 and 1, the  large n behaviour of 
the x,  is identical;  they  approach  the  point x = 0  
after  a  certain  number of steps.  But  for  larger  values 
of p the  dynamics is much  more  interesting  as  can  be 
easily  verified using  a  hand-held  calculator.  Various 
types of stationary  solutions of the logistic map  are 
exemplified by figures 1 and 2. 

Figure 1 shows  return  maps  (plots of x , , ,  versus 
x , )  for ,U = 1.5, 3.3.  3.5 and 3.8. The successive 

appearance of attractors of period  one,  two.  four 
and of a  one-dimensional  chaotic  attractor  can  be 
appreciated in these  plots.  Figure 2 illustrates  this 
kind of behaviour in a  different  and  more  global 
way; it shows  a  plot of the  large n behaviour of the 
iterates  (i.e.  the  attractors) of the logistic map  as  a 
function of the  value of p.  This  graph gives a 
‘pictorial  meaning’  to  the way the  onset of chaos 
occurs via a  sequence of ‘pitchfork’  (period- 
doubling)  bifurcations  as  the  value of p changes. I t  
also  shows  the critical dependence of the  behaviour 
with the  value of this  parameter.  For  values of p 
between 1 and 3 ,  and  almost all initial  values x ( , ,  
there is a single point  attractor (figure l(a)). Then. 
as p is increased  between 3 and 4,  the  dynamics 
changes in surprising  ways.  First,  for 3 < p S ( l +  G) 
the  stationary  solution  bifurcates  to  a  period-two 
attractor-the  period of the  solution  has  doubled 
and its frequency  halved,  hence  the  names of 
period-doubling or subharmonic  bifurcation given to 
the phenomena-as can  be  seen in the  bifurcation 
diagram  (figure 2),  where  the  solution  hops  back 
and  forth  between  the  upper  and  lower  branches of 
the  pitchfork,  and in  figure l (b ) .  As p is increased 
further.  the  solution  bifurcates  again  to  a  period- 
four  attractor,  then  to  a  period-eight  attractor  and 
so on. This  sequence (or cascade) of bifurcations 
continues  indefinitely,  but  the  interval of values of p 
in which a given periodic  orbit  acts as  an attractor 
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shrinks  very  quickly  at  a  rate  governed by the 
universal  parameter 

6 =  lim “4.6692.. . P E  -Pn-l 
n-= ,P,+, -P,, 

(3) 

until  a  critical  value = 3.5699.. . is reached  (Fei- 
genbaum 1978, 1979).  This  value  marks  the  begin- 
ning of the  aperiodic  regime:  the  iterates  seem  to 
wander  erratically  around  a  subset of the  unit  inter- 
val. If we increase p further,  windows of periodic 
motion of every  integer  period  reappear.  Chaotic or 
periodic  motion  can  be  found  for  suitable  values of 
,u>pm. A complete discussion of the  properties of 
the logistic map  can  be  found in the  account given by 
Feigenbaum (1983). For a  more  complete  discussion 
of the  period  doubling  as well as  other  possible 
routes  to  chaos in a  dynamical  system  see  Kadanoff 
(1983). 

As with many  other  properties  discovered in 
systems  making a period-doubling  transition  to 
chaos,  the  constant d is universal in the  sense  that it 
is found  to  be valid for a  large  number of systems 
and  not  only  for  the logistic map. For example, if the 
dripping  faucet effectively follows  the  period- 
doubling  route  to  chaos  and  we  were  able  to  calcu- 
late 8, we should find a  numerical  value  very  close  to 
that given in (3). Now,  obviously,  not  every  feature 
of the logistic map is shared by other  systems,  for 
example,  the  values  quoted  above  for  the  onset of 

instabilities in the  attractors  are  not universal-they 
are specific for  the logistic map. 

3. The dripping faucet experiment 
The  apparatus  used in the  experiment is rather 
simple  and widely available.  We use a  Commodore 
64  microcomputer  for  data  acquisition  and  subse- 
quent  analysis  and  display.  The inclusion of an 
automatic  data-taking  procedure is fundamental in 
an experiment which requires  the  taking of 2000 
data  points  every  time it is run. In fact.  this  repre- 
sents  an  additional  advantage,  for it allows the 
students  to  learn  simple  interfacing  techniques  and 
to  work with a  microcomputer-assisted  experiment. 

The basic apparatus is shown  schematically i n  
figure 3. It  consists of a  large  reservoir of water  (a 
large  Mariotte  bottle)  kept  at  a  constant  pressure 
with the  help of a float valve.  The  water can flow 
through  a valve to  a  plastic  tube with a nozzle at  the 
end.  This  valve,  as well as the float valve,  were 
obtained  from  a  used  automobile  carburetor.  With 
its help we can  control  the  dripping  rate, which is the 
control  parameter in our experiment.  Drops falling 
from  the nozzle pass  through  an  optocoupler 
(General  Electric H23L1, with a  Schmidt  trigger 
included  at  the  output) which produces  a TTL pulse 
for  each  drop.  The  pulses  are  sent, via a  very  simple 
interface (figure 4) ,  to the  user  port of the 
Commodore  64  microcomputer.  The  computer is 
used to  store  the  data,  to  compute  the  drip  interval 

Figure 2. A section of the bifurcation  diagram of the  logistic map. The graph shows the asymptotic behaviour of x,, for 
values of ,U between 2.94 and 4.  
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Figure 3. Schematic  diagram of the  experimental  set-up.  We  use  a  float  valve  (marked  'level  control' in the  diagram) 
to  maintain  the  water  level  in  an  upper  reservoir  (not  shown). 

and  to  display  the  return  maps  obtained.  With  this 
arrangement  students  are  able  to  take,  store  and 
analyse  up  to 3072 drips  (using 6 Kbyte of memory). 

The  machine-language  subroutine  used  for 
acquiring  the  data  and  measuring  the  drip  interval 
T, is capable of taking  data  up  to  a  rate of 1.2  kHz, 
far  above  the  dripping  rates  occurring in the  experi- 
ment,  and  has  an  estimated  resolution of 50 p .  This 
estimation  has  been  tested  with  good  results with the 
help of a signal generator  (Wavetek 181) used  as  the 
input of our data-taking  device. 

The flow rate is controlled by means of the  car- 
buretor  valve,  but  we  do  not  measure it directly. 

preferring  instead  to  use  the valve setting  as  an 
indicator.  The  program  we  use  to  analyse  the  data 
computes  a  mean  dripping  rate.  The  mean  dripping 
rates  students  are  able  to  investigate  under  experi- 
mental  conditions  vary  from 0.1 to 40 drips/s,  a  rate 
at which the  drops  become  a  continuous  stream of 
water.  In  this  interval,  the  system  moves  from  a 
stable  period-one  attractor  and  undergoes  period 
doublings  until  strange  attractors  appear  for  drip- 
ping  rates  greater  than  7  drips/s.  At  such  large 
dripping  rates  the  behaviour is irregular  and,  surely, 
is very  complex (figures 5 and 6). In  fact,  much  to 
our  surprise  the  dynamics of the  system is very  rich 

Figure 4. The  interface is a  single 74LSOO chip.  The  connections  to  the  microcomputer  user's  port  are  shown 
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Figures. Example of the  experimental  results  shown  as T,,,, (vertical  axes)  versus T,, (horizontal  axes)  graphs 
redrawn  from  the  printout of our data.  Periodic  behaviour, (o) - (c) :  complex  chaotic  behaviour. ( d ) - ( f ) ,  AI1 values of 
time  are in milliseconds. 

and  shows  patterns  not discussed in Martien et al.  
All of this has  generated  a  great  deal of interest 
among our students. 

Typical experimental  results  are  shown  as T,,,, 
versus T,, plots in figures 5 and 6 (notice  the  qualita- 
tive similarity of figures 5(a)-(c) with  figures l (a ) -  
(c). These  are  plots of the 2000 typical points  taken 
each  time  the  experiment is run.  The  beginning of a 

114 ; I 
I I I 

11 4 122 130 
Figure 6.  Another  example of an  attractor in the  chaotic 
region.  Note  the  folding  and  separation  developed  as i t  
becomes  a  more  complex  attractor.  Axes  and  units  as for 
figure 5 .  

period-doubling  sequence  can be appreciated;  the 
dripping  behaviour  shows  attractors of period  one, 
two  and  four  prior  to  the  chaotic  regime.  With  the 
current  experimental  arrangement it is not possible 
to  ascertain precisely the  ranges of stability of the 
attractors  but.  roughly,  the  students  have  found  the 
periodic  attractors to be  present  up  to 7 dripsis. For 
greater  dripping  rates we observe  chaotic  behaviour, 
signalled by what  seem to be  strange  attractors: 
typical examples  are  shown in figures 5(d)-V) and in  
figure 6. This last attractor  has  been singled out 
because it  illustrates  the  folding,  stretching  and 
fractioning  that  occur in the  attractors in  the  process 
of becoming  more  complex,  as  a  result of increasing 
the  dripping  rate.  We  have  not been able  to  see 
periodic  attractors of period  larger  than  four.  due 
perhaps  to  the  inherent noise in the system or to  the 
somewhat  poor  control  of  dripping  rates  allowed 
by the  carburetor  valve.  But,  occasionally,  students 
were  able to observe cycles of period  three 
immersed in the  chaotic  regime. As these  obser- 
vations  are  very  sensitive  to  the valve setting  and  to 
vibrations  produced  near  the  apparatus. we have 
been  unable  to  reproduce  them  at will with the 
current  experimental  arrangement. 

The result of the  experiment  has  been  taken  as an 
indication of a  period-doubling  route  to  chaos in the 
system, but to be conclusive  further  evaluation is 
needed. For example, i t  may require  the  compu- 
tation of universal  parameters like d. But  before we 
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can  determine  such  parameters we must  be  able  to 
measure with greater  confidence  the  stability  inter- 
vals of the  attractors  and  to  discern  at  least  a  period- 
eight  attractor. 

As  figures 5 and 6 show,  the  aperiodic  regime 
exhibits  patterns of behaviour which seem  to  have 
an  underlying  one-dimensional  structure  somewhat 
blurred by the  noise in the  system.  This  quasi-one- 
dimensional  appearance of the  attractors is an  indi- 
cator of chaotic  behaviour  as  a  characteristic of the 
system and  not  a  result of external  noise  generated, 
for example. by the  carburetor valve or produced 
by small  air  currents.  On  the  other  hand,  these 
results  show  that  a  qualitative  model in terms of a 
one-dimensional  mapping  may  be  appropriate. In 
fact.  to  analyse  the  results of their  experiment 
Martien et a/ proposed  a  very  simple  one- 
dimensional  analogue  model.  It is worth  mentioning 
here  that  the  system  exhibits  hysteresis  and  the 
bifurcation  points  may  differ  for  increasing  and 
decreasing  dripping  rates.  Despite  the  fact  that  the 
system is expected  to  show  hysteresis, we believe 
our observations  to  be  due  mainly  to  the valve used 
to  control  the flow of water.  We  are  now  trying to 
improve  the  arrangement  and  to use a  good  needle 
valve in order  to  determine  this. 

4. Conclusions 
In summary, we have  presented  an  experiment in 
which students  can  investigate  the  non-linear  behav- 
iour  and  the  route  to  chaos in a  dripping  faucet. 
Students  are  able  to  observe  a  sequence of period 
doublings  preceding  chaos  and  the  existence of a 
chaotic  regime with various  types of strange  attrac- 
tors.  They  can  also  convince  themselves  that  despite 
the  large  number of variables  involved in the  pheno- 
menon i t  can be qualitatively  modelled by a  one- 
dimensional  mapping  (although we may  expect  bet- 
ter  agreement with a  mapping of greater  dimensio- 
nality). 

In view of the  above  results,  and  to  the  relative 
simplicity of the  experimental  arrangement, we 
think  that this system is very suitable  for  introducing 
the  concept of non-linear  dynamics  and  the  tech- 
niques for its experimental  study.  The  experiment is 
a very good  example of the  type of behaviour 
possible  in  classical dynamic  systems. Our experi- 
mental  set-up  can  also  be useful as  an  exhibit or to 
inform  conferences  addressing  wider  audiences.  On 
the  other  hand,  when  used in an  open-ended  investi- 
gation. i t  has  allowed  our  students  to  explore  the 
many  features of the  transition  to  chaos  at  their  own 

level  and  interest.  Another  useful  feature of the 
experiment is that it  allows advanced physics stu- 
dents  to  learn  about  simple  interfacing  techniques 
and  the  use of microcomputers as data-taking 
devices in  physics experiments. 

Finally,  we  must say that  a  similar  experiment is 
being  developed  at  Universidad  Simon  Bolivar 
(Venezuela) by Professor C L Ladera  at  the  sugges- 
tion of one of us (ALSB). 
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