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Using a mass-spring model, we study a periodically forced dripping faucet as an example of
nonfeedback control systems. The model is confirmed to exhibit entrainment from chaotic to periodic
motion by adding an external force, which has been observed experimentally. It is found from an analysis
of a two-dimensional Poincaré map that a discontinuous change between chaotic and periodic motion
occurs via global bifurcations including a homoclinic bifurcation and a homoclinic tangency crisis. A
hysteresis of the transition point is also explained. A possible way of suppressing chaos in the dripping
faucet system by periodic forcing is suggested from the mass-spring model, which is also supported by a
corresponding fluid dynamical simulation.
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1. Introduction

Chaos occurs widely in engineering and natural systems.
In the past few years practical implementations of control-
ling chaos have been studied with great interest.1–6) Such
control schemes can be divided broadly into two categories,
feedback control and nonfeedback control. The pioneering
work on controlling chaos by Ott, Grebogi, and Yorke (OGY
method)2) is a representative example of feedback control
systems. The OGY method aims to stabilize one of many
unstable periodic orbits embedded in the chaotic attractor
through small time-dependent perturbations in an accessible
system parameter. Although the OGY method is very
general, it is difficult for some high-speed systems to
implement the control procedure. In the nonfeedback control
systems, on the other hand, the applied perturbation is
independent of the state of the system. So far, controlling
chaos by applying a suitable weak periodic perturbation,
which is sometimes called taming chaos,3) has been studied
in a variety of chaotic dynamical systems both theoreti-
cally4–7) and experimentally.8) Recently, analyzing a con-
strained system in which a one-dimensional Poincaré map is
derived, Tamura et al.4) showed that taming chaos occurs by
a saddle node bifurcation. However, many issues in the
nonfeedback control scheme are still not well understood,
for example, phase effect,6) phase diagram structures,5)

bifurcation structures for higher-dimensional dynamical
systems,5) etc.

Recently, Ilarraza–Lomel et al. applied the OGY method
to a dripping faucet system. They suggested a possible way
of controlling chaos using a magnetorheological fluid in
place of the customary water. On the other hand, an
influence of periodic forcing on a dripping (water) faucet has
been investigated experimentally by Shoji.27) He found that
a periodic external force can induce a transition from
periodic to chaotic (instead of chaotic to periodic) motion.
Motivated by these studies, we investigate in this paper a
dripping faucet system under the influence of periodic
forcing.

A dripping faucet system without any perturbation has
been studied intensively9–24,27) since Shaw10) found the first
experimental evidence of chaotic behavior, and proposed a
mass-spring model for this system. Shaw’s model exhibits
periodic and chaotic oscillations which look somewhat
similar to experimental observations. However, any direct
link between such a simple model and the complex
mechanisms of drop formation had not been clarified until
recently.

In our previous work,9,22) we performed a fluid dynamical
simulation based on a new algorithm in order to know how
any simple model can mimic the real dripping faucet
systems. The results of the simulation successfully repro-
duced not only deformation of the liquid but also various
dynamical behavior observed experimentally. A detailed
analysis of the simulation results made it possible to
reconstruct a more realistic mass-spring model. The
improved mass-spring model thus obtained reproduced
experimental results in good qualitative agreement in a
wide range of the flow rates; and a variety of complex
dynamical behavior can be systematically explained in terms
of a low-dimensional dynamical system.

We apply the improved mass-spring model to a dripping
faucet system under a periodic force. We first confirm in §2
that the model can well reproduce a bifurcation diagram
obtained from the experiment of a periodically forced
dripping faucet. We then numerically analyze, in §3,
bifurcations induced by periodic forcing. The periodic
external force is shown to induce discontinuous changes
from chaotic to period-one (P1) motion. A hysteresis of the
transition points between chaos and P1 motion is observed
depending on whether the forcing amplitude is increased or
decreased. Such sudden changes usually do not occur for the
same system without periodic forcing. It turns out from an
analysis of a Poincaré map that a homoclinic bifurcation and
a homoclinic tangency crisis (boundary crisis) are essential
to suppress the chaotic motion, which had not been realized
so far. In §4, we present a fluid dynamical simulation which
shows similar changes from chaotic to P1 behavior as
predicted by the mass-spring model.
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2. Effects of Periodic Forcing on the Dripping Faucet

First of all, we confirm that our mass-spring model can
reproduce the dynamical characteristics of a periodically
forced dripping faucet observed experimentally. To our
knowledge, any study of periodically forced dripping faucet
systems has not been reported, except for Shoji’s experi-
ment.27) In his experiment, a periodically oscillating speaker
was set on the top of the faucet as shown in Fig. 1, and
dripping time intervals fTng between successive drops were
measured. For tiny faucets (diameter !1mm) and suffi-
ciently slow flow rates Q without any periodic perturbation
the time series fTng are almost equal at each flow rate [Fig. 2
(a)]. In contrast, when the speaker oscillates periodically
[Fig. 2(b)], the time series fTng are distributed over a finite
range for various flow rates. In Fig. 2(b) one can see sudden
changes from P1 to chaotic motion together with period-
doubling bifurcations from P1 to P2. Moreover, frequency
entrainments are observed over a certain range of the flow
rate: for example, P1 motion with period Tn ¼ 4! is
indicated in Fig. 2(b), where ! is the forcing period.

Our mass-spring model can reproduce a bifurcation
diagram in good qualitative agreement with the experimental
observations (Fig. 2), as shown in Fig. 3. The mass-spring
model (see ref. 9 for details) with a periodic external force is
described by the following equations:

d

dt
m
dz

dt

! "

¼ #kz# "
dz

dt
þ mgþ A sin

2#t

!

! "

; ð2:1Þ

where z is the center of mass of the forming drop, m is its
mass, and g is the gravitational acceleration. Throughout the
paper the units of the length, time, and mass are chosen as
l0 '

ffiffiffiffiffiffiffiffiffiffiffi

!=$g
p

(¼ 0:27 cm), t0 ' ð!=$g3Þ1=4 (¼ 0:017 s), and
m0 ' $l30 (¼ 0:020 g), respectively, where ! is the surface
tension, $ is the density. (The numbers in parenthesis
correspond to the water at 20(C). Using these units, one can
set g ¼ 1 in eq. (2:1). The damping parameter " was chosen
as " ¼ 0:008. The drop mass increases linearly with time:

dm

dt
¼ #a2v0 ¼ const.; ð2:2Þ

where a is the radius of the faucet, and v0 is the flow
velocity. The term #kz represents a surface tension effect of
a drop and the spring constant k depends on the mass (i.e.,
the shape of the drop) as

kðmÞ ¼
3:1m#0:58 ðm < 0:584Þ
#31m2 þ 32m# 3:88 ð0:584 ) m < 0:891Þ :

0 ðm * 0:891Þ

8

>

<

>

:

ð2:3Þ

The above mass dependence of the spring constant k was
obtained from the corresponding fluid dynamical simula-
tion9) (without periodic forcing) for a ¼ 0:183. After k
reaches zero (m * 0:891), the drop undergoes free-fall until
the breakup moment, which corresponds to the necking
process of the fluid. An important difference of our mass-
spring model from others10,24–26) is that the necking process
is taken into account explicitly. Breakup of a drop is
described in the mass-spring model by assuming that a part
of the mass is lost when the position z reaches a critical point
zcrit. The remnant mass mr under the faucet is renewed as

mr ¼ Bmþ C; when z ¼ zcrit; ð2:4Þ

depending on the total mass m at the breakup moment,
where B ¼ 0:068 and C ¼ #0:053. The position and the
velocity just after a breakup moment are renewed as

z ¼ z0

_zz ¼ v0

)

when z ¼ zcrit: ð2:5Þ

The breakup position zcrit, the renewed position z0 and the
velocity v0 were assumed as constant: zcrit ¼ 4, z0 ¼ 0:15
and v0 ¼ 0. The relations (2:3), (2:4) and the above

Fig. 1. Schematic setup of a dripping faucet in Shoji’s experiment.27)

Fig. 2. Bifurcation diagrams in a dripping faucet experiment (a) without
and (b) with periodic forcing. The faucet is 1.0mm in inner diameter,
1.6mm in outer diameter. In (b) the forcing period ! ¼ 0:05 s. (Reprinted
by courtesy of Professor M. Shoji.27))

Fig. 3. Bifurcation diagrams obtained from the mass-spring model. (a) the
unperturbed system. (b) A ¼ 0:7. The faucet radius a ¼ 0:183 corre-
sponds to 1.0mm in diameter. ! ¼ 2 (¼ 0:034 s).
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parameter values were obtained by referring to the results of
the fluid dynamical simulation.

Comparison between Fig. 2 and Fig. 3 indicates that the
present model can well reproduce the qualitative aspects of
the experimental results for the dripping faucet under
periodic forcing. Moreover, this simple model allows one
to analyze the dynamics of the system in terms of a low-
dimensional map. When no periodic force is applied
(A ¼ 0), the remnant mass at the breakup moment, mr;nþ1,
is uniquely determined only by the previous remnant mass
mr;n as shown in ref. 9). That is, Poincaré map is defined as a
one-dimensional map function mr;nþ1 ¼ Mðmr;nÞ, because,
just after a breakup moment, the initial conditions of eq.
(2:1) are set to be mr;n, z0 and v0, where z0 and v0 are
constants. Accordingly, the dripping time interval Tn is also
uniquely determined from mr;n: Tnþ1 ¼ Gðmr;nÞ. Note that
the dynamics of mr;n and that of Tn are not topologically
conjugated unless the inverse G#1ðTnþ1Þ exists. In fact, G#1

is multivalued, and so is the return map of Tn, namely,

Tnþ1 ¼ Gðmr;nÞ
¼ GðMðmr;n#1Þ

¼ GðMðG#1ðTnÞÞÞ ' HðTnÞ

is multivalued. To avoid this seeming complexity for the
return map of Tn, one may analyze the single valued map
function Mðmr;nÞ.

Figure 4 shows a typical example of the Poincaré map of
mr;n obtained numerically from the mass-spring model
without periodic forcing (A ¼ 0). The map Mv0ðmr;nÞ is an
oscillating function of mr;n, and is shifted to the lower left as
the flow velocity v0 increases. The bifurcation diagram in
Fig. 3(a) is understood in terms of this map function: No
bifurcation occurs because the stability coefficient % '
M0

v0
ðmr;+Þ at the fixed point mr;+ satisfies j%j < 1 for v0 in the

range corresponding to Fig. 3(a). In addition, oscillating
behavior of Mv0 ðmr;nÞ is reflected in the oscillation of the Tn
vs. v0 plot.

When a periodic force is applied, the Poincaré map just
after the breakup moment is two dimensional because of an
additional degree of freedom, the phase of the external force.
The map function is then expressed as

mr;nþ1

&nþ1

! "

¼ M
mr;n

&n

! "

; ð2:6Þ

where

& ¼
t

!
modulo 1:

Now, the entrainment observed in Fig. 3(b) can be
explained as follows. Let x ' mr; &ð Þ be a state point on the
Poincaré section just after the breakup moment [eq. (2:6)],
and let x ' mr; &

$ %

be a P1 orbit satisfying x ¼ MðxÞ. Let us
note that the period of P1 motion under periodic forcing
must be an integer multiple of the forcing period: Tn ¼
N! ¼ const. Then the linear relation eq. (2:4) yields an
explicit expression for mr;n ¼ mr:

mr ¼
BQN! þ C

1# B
; ð2:7Þ

where Q ¼ #a2v0. The fixed point x corresponding to P1
motion should satisfy

x 2 I \MðIÞ; ð2:8Þ

where I ' fðmr; &Þ j mr ¼ mrg, and the entire line I is
mapped onto a curve MðIÞ. For a specified value of the
integer N, P1 orbits are obtained from eq. (2:7). Figure 5
illustrates how the P1 orbits with N ¼ 6 are generated as the
flow velocity v0 is increased from v0 ¼ 0:78 to v0 ¼ 0:80 in
Fig. 3(b), where I, and MðIÞ are shown by a dashed line, and
a solid curve, respectively. As v0 increases, I is shifted to the
right and MðIÞ to the left and then they intersect. As will be
illustrated in detail in the next section, two P1 orbits
corresponding to the intersection points x0 and x1 are
generated via a saddle-node bifurcation; x0 is stable and x1
is unstable at v0 ¼ 0:78. In the range of v0 where MðIÞ
intersects I, the dripping time intervals fTng are entrained to
an integer multiple of the forcing period !: Tn ¼ N! (P1).
[After period doubling, the P2 motion should satisfy Tn þ
Tnþ1 ¼ 2N! (P2).] On the other hand, chaotic motion is
realized before the intersection [see Fig. 5(a)].

3. Taming Chaos

As presented in the previous section, the experiment and
the model simulation have indicated that the dripping faucet
under a periodic force exhibits entrainment, i.e., a sudden
change from chaotic to periodic motion as the flow rate Q (or
equivalently, the flow velocity v0) is varied. This easily
suggests that chaotic motion for a fixed value of Q might
also be entrained to periodic motion if a parameter of the
periodic force, say, the amplitude A, is controlled (taming
chaos). In this section, we investigate the dynamics of
taming chaos in the dripping faucet system using the mass-
spring model.

So far, many experimental and theoretical studies have
confirmed that dripping faucet systems without periodic

Fig. 4. Map function mr;nþ1 ¼ Mv0 ðmr;nÞ obtained from the mass-spring
model without periodic forcing (A ¼ 0). (a) v0 ¼ 0:78. (b) v0 ¼ 0:80.

Fig. 5. I is shown as a dashed line and their images MðIÞ are shown as
solid curves for forcing amplitude A ¼ 0:7 and ! ¼ 2. (a) v0 ¼ 0:78;
examples of chaotic orbits (open circles). (b) v0 ¼ 0:80; x0 is a stable
fixed point.
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perturbations exhibit period doubling cascade to
chaos.9–24,27) In addition, it was found both experimen-
tally21) and theoretically9) that a unit structure which
includes chaotic transitions repeatedly appears in bifurcation
diagrams in a wide range of the flow rate for relatively large
faucet radii. Figure 6 shows a typical unit structure in the
bifurcation diagram calculated from the mass-spring model
for the faucet radius a ¼ 0:916 (2.5mm), where no periodic
perturbation is applied. Besides period doubling route to
chaos, one can see, in Fig. 6, a hysteresis depending on
whether v0 is increased or decreased. Note that the hysteresis
occurs in the transition point between two periodic orbits
(instead of a periodic and a chaotic ones). In contrast, it turns
out that the dripping faucet under periodic forcing exhibits
another type of hysteresis which occurs in the transition
point between periodic and chaotic motion when the forcing
amplitude is varied for a fixed value of v0. In this section, the
same parameter values as in ref. 9 have been employed:
a ¼ 0:916, " ¼ 0:05, zcrit ¼ 5:5, z0 ¼ 2:0, B ¼ 0:2, and
C ¼ 0:3), and the spring constant is assumed as

kðmÞ ¼
#11:4mþ 52:5 ðm < 4:61Þ
0 ðm * 4:61Þ

&

: ð3:1Þ

Now we apply a periodic force to the system in a chaotic
state at v0 ¼ 0:115 [eq. (2:1)]. Figure 7(a) and 7(b) are
bifurcation diagrams, where the forcing amplitude A is
decreased in (a) and increased in (b). A sudden change

between chaotic and periodic motion occurs at a different
value of A depending on whether the forcing amplitude is
increased or decreased (hysteresis). To understand the
discontinuous change of the oscillating state and the
hysteresis, we analyze the Poincaré section in the two-
dimensional space (mr; &) in detail. As discussed in §2, Fig.
8(a) illustrates how P1 orbits with N ¼ 2 are generated as A
is increased.

As A increases through A ¼ 0:9347, I intersects MðIÞ. It
was found numerically that two P1 orbits x0 and x1, i.e., the
intersection of I and MðIÞ, are generated via a saddle node
bifurcation, where x1 is a saddle. The other fixed point x0 is
a source (instead of sink) just after the saddle node
bifurcation point. Therefore, there is only one attractor
which is chaotic at this stage. It was found from a detailed
analysis that the bifurcation of the 2-dimensional map of the
present system can well be explained by a discretized
version of a 2-dimensional flow which yields a homoclinic
bifurcation: a scenario of a homoclinic bifurcation similar to
that presented in ref. 28 can be applied, as shown in Figs.
9(a)–9(f). Figure 10 illustrates invariant manifolds of the
Poincaré map (solid curves with arrows) together with
numerical examples of orbits near the manifolds (dots and
thin lines). The saddle node bifurcation point is presented in
Fig. 10(a). As the parameter A increases, the unstable fixed
point x0 is stabilized by a Hopf bifurcation [Fig. 10(b)]. The
basin boundary of x0 is then an unstable limit cycle
generated by the Hopf bifurcation. Further increase of A
induces a homoclinic bifurcation [Fig. 10(c)]. Up to this
stage, the basin of x0 is a small closed region. After the
homoclinic bifurcation, the basin of x0, whose boundary is a

Fig. 6. Bifurcation diagram obtained from the mass-spring model without
periodic forcing. a ¼ 0:916. A hysteresis is observed depending on
whether the flow velocity v0 is increased or decreased, as indicated by
arrows.

Fig. 7. Bifurcation diagram obtained from the mass-spring model with
periodic forcing (a ¼ 0:916, v0 ¼ 0:115, ! ¼ 6). Plot of the remnant mass
at the breakup moment vs. forcing amplitude A. The final state at the
present value of A is chosen as the initial state at the next value of A; (a) A
is decreased; (b) A is increased. The first 1000 points are discarded at each
value of A. However, scattered points for A > ~AA are transient because of
very long transient times.

Fig. 8. (a) I is shown as a dashed line and their images MðIÞ are shown as
solid curves at various forcing amplitudes A. (b) Orbits near period-one
orbits on the Poincaré section.

Fig. 9. Schematic of bifurcations.
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heteroclinic orbit, is open. However, the chaotic attractor
coexists and the motion remains chaotic, as shown in Fig.
11(a).

After A passes through a critical value ~AA ¼ 0:963, the
chaotic attractor disappears via a boundary crisis due to a
homoclinic tangency, and then the periodic motion x0 is
realized. At the moment of the homoclinic tangency, the
stable and unstable manifolds of x0 are tangent, which is the
so called homoclinic tangency crisis.31) The coexistence of
the two attractors results in the hysteresis as shown in Fig.
11(a). If one starts from a large enough value of A [say
A ¼ 1:2 in 8(b)] at which the P1 motion is realized, and
reduces the A value through ~AA, the system keeps the P1
motion till the Hopf bifurcation occurs at A , 0:936. At a
critical value A ¼ ~AA, the system exhibits the following
scaling property:

nt ! ðA# ~AAÞ#1:1 for A > ~AA; ð3:2Þ

where nt is the average transient lifetime defined by the
average iteration number before the orbit falls within a
distance " (¼ 10#3) from the stable P1 orbit [see Fig.
11(b)]. The average was taken over 25 initial points on the

Poincaré section. The exponent and the value of ~AA were
determined by least square fitting. As will be explained
bellow, we conjecture that the critical exponent for two-
dimensional maps can be estimated in terms of the
information dimension D1 of the original chaotic attractor
just before the crisis as

" , D1 #
1

2
; ð3:3Þ

where nt ! ðA# ~AAÞ#" . From eq. (3:3), one is suggested a
relation between the critical exponent " and the Lyapunov
exponents of the chaotic set, because the Kaplan–Yorke
conjecture connects D1 to the Lyapunov exponents of the
chaotic orbit.33) We numerically obtained D1 ¼ 1:6 for the
chaotic set in Fig. 11(a) using the fixed mass approach.30)

Thus " is close to 1:1 as one can see in Fig. 11(b).
To derive the relation (3:3), let us consider the relative

frequency that the chaotic transient orbit visits the small gray
shaded region S in Fig. 9(g). Once the orbit gets into the
region S, it rapidly converges to the stable fixed point x0. As
A increases and passes through the critical value ~AA, the
unstable manifold crosses the stable manifold as shown in
Fig. 9(f) and 9(g), which is schematically illustrated as in
Fig. 12. Let the width of the region S be p (note that
p ! A# ~AA). By assuming the quadratic tangency, the area of
S is estimated as p-

ffiffiffi

p
p

. Further, let us assume that the
information dimension D1 is regarded as the box-counting
dimension of the smallest set that contains most of the
attractor measure. (This has been proved, for example, in
case of the generalized baker’s map32,33)). When the chaotic
attractor is covered with rectangles of the size ! p-

ffiffiffi

p
p

, the
number NðpÞ of rectangles is given by

NðpÞ ! p#ðD1#1Þ -
ffiffiffi

p
p$ %#1¼ p# D1#

1
2

$ %

ð3:4Þ

where we have assumed that the dimension of the attractor
along the direction of the unstable manifold equals to unity.
By assuming further an equal frequency that the orbit visits
each rectangle, we obtain

nt ! NðpÞ ! ðA# ~AAÞ#ðD1#
1
2Þ; ð3:5Þ

which yields (3:3). In Fig. 7(b), it should be noted that the
chaotic orbit does not exist in the range A > ~AA ¼ 0:963. The
scattered points of mr;n after A passed ~AA is just transient.

The critical exponent of the chaotic transients was studied
by Grebogi et al.31) Although our approach is different from
theirs, the values of " which they obtained by numerical
experiments on Ikeda map and Hénon map are in good
agreement with " obtained from eq. (3:3).

Fig. 10. Invariant manifolds (solid curves with arrows) and examples of
orbits (dots and thin lines). v0 ¼ 0:115, ! ¼ 6. (a) A ¼ 0:9347. (b)
A ¼ 0:940. (c) A ¼ 0:9441. (d) A ¼ 0:950.

Fig. 11. (a) Poincaré section at A ¼ 0:950. A stable fixed point x0 and the
coexisting chaotic attractor. The gray rectangle corresponds to Fig. 10(d).
(b) Log-log plot of the average transient lifetime nt vs. ðA# ~AAÞ, where
~AA ¼ 0:963. Fig. 12. Schematic diagram.
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4. Fluid Dynamical Simulation

We have shown, using the mass-spring model, that the
dripping faucet under periodic forcing undergoes a sudden
discontinuous change between chaotic and periodic motion
as the forcing amplitude is varied, and the transition point
exhibits a hysteresis.

As mentioned already, the parameters of the mass-spring
model have been determined from the corresponding fluid
dynamical computations (FDC).9,22) Naturally a transition
similar to that observed in the mass-spring model should be
expected for FDC, which we show in this section.

In the present FDC, we have perturbed the flow velocity
as

v ¼ v0 1þ ' sin
2#t

!

! "! "

; ð4:1Þ

in place of adding the periodic force. In case of FDC, the
drop is not a point mass. Thus, the periodic perturbation
applied to the top of the drop is better described in terms of
the oscillation of the flow velocity (¼ the velocity of the top
of the fluid) rather than the oscillating force which acts on
the center of mass of the fluid.

Figure 13 is a bifurcation diagram for no periodic
perturbation (' ¼ 0). The faucet radius is a ¼ 0:916
(2.5mm) and the viscosity is for the water at 20(C: ( ¼
0:002 in units of (0 ' ð$!3=gÞ1=4. The unit structures of
Fig. 13 and 6 exhibit several common characteristics: a
period doubling, a period doubling cascade to chaos, a P2
motion in the middle of the unit, a transition between
different periodic motions, the transition point which shows
a hysteresis.

When the periodic perturbation is applied to a chaotic
state at v0 ¼ 0:095 (see Fig. 13), the bifurcation diagram are
obtained as Fig. 14(a) and 14(b). One can see sudden
discontinuous changes between chaotic and periodic motion.
A transition point exhibits a hysteresis, i.e., the change
occurs at ' ¼ 0:043 for increasing ', and at ' ¼ 0:38 for
decreasing '.

5. Conclusion

We have demonstrated from both the mass-spring model

and the fluid dynamical computation that periodic forcing
induces transitions between chaotic and periodic motion in
the dripping faucet system. Since the dimension of the
dynamical system generally increases by 1.0 by an external
perturbation, a saddle node bifurcation can occur, which is
not inherent in the original dynamics of the dripping faucet.
Global bifurcations following the saddle node bifurcation are
the origin of the discontinuous change from a chaotic to a
periodic state.

Postnov et al.34) analyzed a periodically forced 4-
dimensional flow, and found that a torus coexists with a
stable periodic orbit between a saddle node bifurcation and a
homoclinic one. In the present system, in contrast, chaos
coexists with a stable periodic orbit between a Hopf
bifurcation and a homoclinic one.

It is interesting to note that a similar structure of the
Poincaré section as in Fig. 10(d) was observed in a dripping
faucet experiment by Pinto and Sartorelli,23) although no
periodic force was applied. The present analysis suggests
that their result may possibly be explained if any oscillatory
factor was generated inevitably in the experimental condi-
tion.

Taming chaos in the dripping faucet is to stabilize the
system to obtain drops of the same size, which might be
practically important. We have suggested the possibility to
stabilize the system in terms of external periodic forcing.

We thank Professor M. Shoji for permission to copy his
figure. This research was partly supported by Iketani Science
and Technology Foundation.
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16) R. D. Pinto, W. M. Gonçalves, J. C. Sartorelli and M. J. de Oliveira:

Phys. Rev. E 52 (1995) 6896.
17) T. J. P. Penna, P. M. C. de Oliveira, J. C. Sartorelli, W. M. Gon-
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