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A Four-Dimensional Plus 
Hysteresis Chaos Generator 

Kunihiko Mitsubori and Toshimichi Saito, Member, IEEE 

Abstract- This paper discusses a four-dimensional plus hys- 
teresis autonomous chaotic circuit. The circuit dynamics is de- 
scribed by two symmetric four-dimensional linear equations con- 
nected to each other by hysteresis switchings. We transform the 
equation into Jordan form and derive theoretical formulas of 
its three-dimensional return map, its Jacobian matrix and its 
Jacobian. These formulas can be developed easily to general 
dimensional cases and are used to evaluate Lyapunov exponents. 
Then we have discovered torus doubling route to chaos and then 
to hyperchaos. Some of the return map attractors are confirmed 
by laboratory experiments. A rough two parameters bifurcation 
diagram is also given. 

I. INTR~DUC~~N 

C HAOTIC phenomena in electric circuits have been stud- 
ied with great interest. In the study of autonomous 

chaotic circuits, some interesting results are given for three- 
dimensional (3-D) systems [l]-[5], and some experimental 
results are given for four-dimensional (4-D) ones [6]-[8]. Then 
more higher dimensional systems have been recently begun to 
investigate [9]. 

More than 3-D circuits can exhibit hyperchaos [6] and 
related interesting phenomena which cannot be observed in 3- 
D ones. Hyperchaos is a higher dimensional chaos introduced 
by R&sler [7] and is usually defined as a chaotic attractor 
with more than one positive Lyapunov exponent. It implies 
that its dynamics expand more than one direction. They relate 
important fundamental problems: classification of chaos, route 
to chaos and so on [lo], [II]. Also analysis and synthesis 
of such circuits may contribute to engineering applications, 
among them: spread spectrum communications [ 121, [ 131, 
controlling chaos [14]-[ 161 and memory search in artificial 
neural networks [ 171. However, the analysis of more than 3-D 
chaotic circuits is difficult because of the system complexity. 
In order to approach to such a circuit, we should focus on a 
simple model. 

Then, this paper considers a 4-D plus hysteresis autonomous 
circuit given by Fig. l(a). Here, -r-i and -r-s are linear 
negative resistors characterized by V; = -rjij (j = 1,2). In 
experiments, we utilize the central part of a current-controlled 
nonlinear resistor characterized by Fig. l(b). Fig. l(c) gives its 
implementation example. -H is a dependent voltage source 
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characterized by the following hysteresis (see Fig. l(d)): 

-H(v1 +v2) = E for VI + 212 2 -Era/r6 
-E for VI + 712 < Era/q, ’ (1) 

-H is switched from E to -E if vi +va hits the left threshold 
-Er,/rb and vice versa. Fig. l(e) gives an implementation 
example of -H. Here, -H consists of inverting adder and 
hysteresis comparator. Hereafter, we assume that the op amp 
is linear and that the zener diode is ideal. The circuit dynamics 
can’be described by two symmetric linear equations connected 
to each other by a hysteresis switchings: 

RCg = Ril - (q + H(vl + vz)),Ll$ = -VI + rlil 

RC% = Ri2 - (~1 +H(q +vz)),Lz$f = -7~2 +r&. 

(2) 

Here the vector field of the state variables consists of two 
overlapping 4-D halfspaces. 

Such hysteresis chaos generators have been developed by 
Newcomb’s group and us. Newcomb and El-leithy have pro- 
posed a chaos generator that includes binary hysteresis [2] in 
1984. Contemporarily, the second author has proposed a hys- 
teresis chaos generator based on a quasi-harmonic oscillator 
[ 181. Also we show a chaotic circuit family that includes one 
hysteresis resistor in [19] and the normal form equation from 
five-dimensional case is equivalent to (7) in some parameter 
range. The hysteresis resistor can be realized by three segments 
piecewise linear resistor for which a small inductor La is con- 
nected in series. Letting La tend to zero, the piecewise linear 
resistor is to be hysteresis one. Then the 3- and 4-D circuit 
can be treated as 2- and 3-D plus hysteresis one, respectively. 
In these cases, we have given a sufficient condition for chaos 
generation under strong parameter restriction [5], [8]. Chua’s 
circuit includes a three segments piecewise linear resistor and 
some interesting results are given by using piecewise linear 
techniques [20], [21]. The 2-D plus hysteresis chaos generator 
[2], [5] is a limiting case of Chua’s circuit and its analysis 
procedure is simpler because of hysteresis switching of two 
linear systems. 

This circuit exhibits interesting phenomena. Fig. 2 shows 
some examples of them as rb/r, decreases. Fig. 2(a) shows 
a periodic orbit. This circuit has two different resonance fre- 
quencies controlled by two inductors L1 and L2, respectively, 
and their interaction affects the dynamics. As rb/r, decreases, 
the attractor changes to torus Fig. 2(b) and then to chaotic 
attractors Fig. 2(c) and (d). The chaos Fig. 2(d) has different 
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(b) 

Cd) 
Fig. 1. A 4-D plus hysteresis chaos generator. 

topology from Fig. 2(c). This paper analyzes such phenomena 
by using a piecewise linear techniques. The outline is as the 
following: 

1) We transform the circuit equation into Jordan form 
[22] and derive theoretical formulas of the 3-D return 
map, its Jacobian matrix and its Jacobian. These can be 
developed easily to general dimensional cases. 

2) Using these formulas, we evaluate Lyapunov exponents 
[23], [24] for attractor from the return map. These 
exponents are used to classify the phenomena. 

3) We select rb/r, as a control parameter. It controls the 
locations of the equilibrium points. Then we have dis- 
covered torus doubling route [25], [26] to area expanding 
chaos [27] that has positive 2-D Lyapunov exponent. We 
have also discovered volume expanding chaos that has 
positive 3-D Lyapunov exponent. The volume expanding 
chaos is a kind of hyperchaos. Some of the return map 
attractors are verified by laboratory measurements. 

4) We calculate a rough two parameters bifurcation diagram 
in which L2 is another control parameter. It suggests that 
the torus doubling route is not singular. 

In this system, the analysis procedure can be developed 
easily for general dimensional plus hysteresis chaos generator. 
It can contribute to systematic analysis for the general dimen- 
sional case. This is the first circuit in which torus doubling 
route to area expanding chaos and volume expanding chaos 

Cd) 
Fig. 2. Change of attractor as 2 decreases (C N 10 nF, R N 15 kR, 
L1 N 300 mH, L2 Y 150 mH, ~1 N 2.5 k62, ~2 N 1.5 kn). (a) Periodicity 
for 9~ = 3.8; (b) torus for 2 = 3.0; (c) area expanding chaos (~2 > 0) 
for 2 = 2.0; (dj volume expanding chaos (~3 > 0) for T, = = 1.3. 

are confirmed by both numerical experiments using piecewise 
linear exact solutions and laboratory experiments. 

II. JORDAN FORM FOR THE HYSTERESIS CIRCUIT 

Using dimensionless variables and parameters: 

Equation (2) is transformed into the following equation: 

1 
41 1 -7 [ Pl 

PlIPl 

1 
a2P2 1 
- rl [ p2pin2 

h(Xl + X2) , 1 
h(Xl + X2) 1 , (4) 
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where 

h(X1 + x2) = -H f(& + X2) 
( )/ 

,‘j 

C 

1 forX1+X2 2 -1 = 
-1 forX1+X2<1 ’ 
Pl P2 

p1= l-pl> PPyqg. 

The variable Xr, X2, Yl and Ya are proportional to ~1, 212, 
Ril and Ri2, respectively. h is a normalized hysteresis and is 
switched from 1 to - 1 if X1 +X2 hits the left threshold - 1 and 
vice versa. This system has five parameters ( CQ, /3r, CQ, /32,n). 
The parameter a!1 and CQ control oscillation frequencies, pr 
and ,& control dumping, and 7 controls the width of hysteresis 
thresholds. We focus on the case where the coefficient matrix 
of (4) has four complex eigenvalues Ar fjRr and A2 fjR2: 

AI= 
QlPl - 1 (WPl - q2 

2 , fg = al/?- 1) - 4 > 0, 

A2 = a2P2 - 1 (Q2P2 - Q2 

2 ’ 
0; = cQ(l- 02) - 4 > 0. 

(5) 

Note that (1 - ,LJr ) and (1 - &) must be positive hence pl 
and p2 are positive. Then applying the transformation: 

21 = Xl, ~1 = $1(1 + Al)X, + K> 

x2=X2, YZ=&-(l+aZ)Xz+W, 

r = &7’, 
d 

“ . ” = -. 
dr (6) 

Equation (4) can be transformed into the following Jordan 
form [22]: 

[;:I = [n; j!J [[;:I -~[~pl]m-:r2)]> 

[;;I = [-o:2 :;I [[;;I -v[~p2]~(n+4]> (7) 

where seven parameters (Sr , ~52, ~2, pl , ml, ~2, m2) are given 
by 

61 = Al/%, 62 = A2/%, (WI = 11, ~2 = fl2/fh, 

ml = &WI - (1 +A,)>, m2 - ${1//32-(1+&l}. 

Note again that the original parameters are (CQ, ,&, a~, 
p2, n). The equilibrium point moves along the line l? = 
{(x, h) 1 y1 = m1x1,y2 = mazz} as 7 varies. Hereafter, 
we abbreviate (7) as the following: 

k = A(x - rlph(xl + x2)), (8) 

where 

x = (clrY1>~2,Y2)T> P = (m,mm,p2, m2p21T, 

(a) 

(b) 

Cd) 
Fig. 3. Change of attractor from Jordan form as 17 decreases (cyl, PI, 02, 
flz) = (7.5,0.16, 15,0.097) Jordan form parameters: (61, 62, WL), pl, ml, ~2, 
mz) = (0.04, 0.09, 1.47, 0.19, 2.05, 0.11, 2.47). (a) Periodicity for 7, = 3.8; 
(b) torus for 9 = 3.0; (c) area expanding chaos (~2 > 0) for 7 = 2.0; (d) 
volume expanding chaos (/is > 0) for 7 = 1.3. This corresponds to Fig. 2. 

Solution for h = 1 is given by the following and the other 
is symmetric to it: 

where 

x(r) - w = eA’(40) - VP), (9) 

(k = 1,2). 

Fig. 3 shows change of attractor from the Jordan form as n 
decreases corresponding to Fig. 2. The attractors in Fig. 3 are 
equivalent to the ones in Fig. 2 through the transformations in 
(3) and (6). Here, Fig. 3(a) shows a periodic attractor. Bold 
dot arc is on the upper branch h = 1, and fine dot one is 
on the lower branch -1. Its moving angles are 7 in (~1, yr) 
plane and war in (x2, ~2) plane, respectively, where wr = 1 
and wa = 1.47 in this example. 

An interaction between two angular frequencies wr and wa 
affects the switching dynamics. In this case wa is higher than 
wr, trajectory on (22, ~2) plane rotates faster than that in 
(xl, ~1) plane. When the trajectory forms the lower arc on 
(x1, yi) plane, it forms the upper arc on (22, ~2) plane. Such 
proportion is destroyed as a parameter varies. Thus x1 has 
inverse correlation to x2. For a simplicity on the experiment, 
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Fig. 4. Abstract figure of 3-D return map by projection of 4-D halfspaces 
connected to each other by hysteresis switching. 

we select 7 as a control parameter that can be adjusted by only 
rb. As r~ decreases, the equilibrium point approaches to the 
origin. Then the attractor can not keep the proportion between 
both arcs and changes to torus Fig. 3(b), and then to chaotic 
ones Fig. 3(c) and (d). From Fig. 3(a) to (c), the attractor has 
the inverse correlation between IC~ and x2. But in Fig. 3(d), 
because some trajectory segments rotate many times around 
the equilibrium point, it does not have such correlation. In 
next section, we investigate this change quantitatively. 

III. RETURN MAP AND ITS LYAPUNOV EXPONENTS 

In order to derive the return map according to [19], we 
define some objects (see Fig. 4): 

Dm={(x,h)121+22=lr h=l} 
Th-. = {(x, h) ) x1 + x2 = -1, h = l} (10) 
Th’_ = {(x, h) 1 x1 +x2 = -1, h = -l} 

where D,, Th- and Thy are domain of the return map, left 
threshold of h and projection of Th’_, respectively. Note that 
Fig. 4 is an abstract figure of 4-D halfspaces connected to 
each other by hysteresis switching. Let any point in D, be 
represented by its ~2, xp and ys coordinates. 

We consider the case where the trajectory starting from x(0) 
in D, hits a point x(71) in Th- and jumps to the same point 
in Th’-, where 71 is the switching time. Since the vector field 
is symmetric, the trajectory starting from X(Q) in Th’- is 
symmetric to that starting from -x(71) in D,. Then, we can 
define the following 3-D return map: 

F:D,+-+Dm, 

(Yl(O)>X2(OLY2(0)) b-3 -(YI(71),22(71),Y2(71)). (11) 

Image of F is given by: 

(y1(71),52(71),y2(71))T = S(eA’(x(0) - 77~) + w), (12) 

where 

(a) 

(b) 

Cd) 
Fig. 5. Projections of attractors from the return map (C N 10 nF, R N 15 
kQ Lr N 300 mH, LZ N 150 mH, r-1 N 2.5 k0, ~2 N 1.5 k0). Normalized 
parameters: (al, pt, cys, &) = (7.5, 0.16, 15, 0.097). (a) Periodicity for 
n = 3.8; (b) torus for 17 = 3.0; (c) area expanding chaos (~2 > 0) for 
n = 2.0; (d) volume expanding chaos (11s > 0) for 1) = 1.3. a This 
corresponds to Figs. 2 and 3. 

Here, the switching time ~1 can be given by the following 
implicit equation: 

where 

w(eA’(x(0) - w) + VP) = -1, (13) 

w E (1, 0, 1, 0). 

In actual calculations, it can be solved by using the Newton- 
Raphson method. We obtain the image of the map by substi- 
tuting this ~1 into (12). 

Fig. 5 shows the attractors from the return map given by 
both laboratory and numerical experiments. It corresponds 
to the attractors in Figs. 2 and 3. They are projections to 
(~1, -rlh) and (22, ~2) spaces, respectively. The laboratory 
measurements can be realized by the following procedure: 

1) A comparator with threshold voltage zero bipolarizes 
(-H = E corresponds to h = 1). 

2) The comparator output is transformed to trigger pulse 
by a differentiator. 

3) The differentiator output is applied to the luminous 
modulation terminal in the oscilloscope. 

0 1 0 0 
0010. 1 0 0 0 1 

In Fig. S(b), the attractor forms a closed curve. Therefore, it 
is torus. The chaotic attractor in Fig. 5(d) is more complicated 
than that in Fig. 5(c). 

In order to calculate Lyapunov exponents for attractor from 
the return map, we introduce following two theorems. 
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Theorem I: Let DF be the Jacobian matrix of the return 
map. It can be calculated by 

DF = s I _ A(x(~l) - qPjw 

wA(x(71) - ‘VP) ’ 
(14) 

where I is identify, and 

r0 -1 01 

Theorem 2: The Jacobian [DFl can be calculated by fol- 
lowing formula: 

lDF/ = IeAr 1 w-+(O) - VP) 
wA(x(~l) - VP) ’ 

(15) 

The proof of these theorems are. shown in Appendix. These 
formulas are calculated by using the image x(T~), the initial 
point x(0) and the switching time ~1. They can be developed 
easily to general dimensional cases. 

Using these formulas, we can evaluate Lyapunov exponents 
[23], [24] for attractor from the return map. Hereafter, we 
classify chaotic phenomena by the Lyapunov exponents from 
the return map. The map is 3-D and let ~1, ~2 and ~3 be the 
largest one dimensional, the largest 2-D and 3-D Lyapunov 
exponent, respectively. They can be calculated by 

,u2 = $ rlnlDFje{ x DFjeil 
J=l 

(16) 

where e{ and ei are orthonormal bases and they can be 
calculated by using the procedure in [23]. Note that (15) is 
useful to calculate ~3. 

If ~1 is positive then the return map expands the line, if /12 
is positive then it expands the area, and if ,us is positive then 
it expands the volume, respectively. Then, we can classify the 
chaos as the following: 

1) If ~1 > 0 > ~2, then the attractor is line expanding 
chaos. 

2) If ~2 > 0 > ~3, then the attractor is area expanding 
chaos. 

3) If ~3 > 0, then the attractor is volume expanding chaos. 
Here, the area expanding chaos implies that the map expands 
no volume but area. Also, the line expanding chaos implies 
that the map expands neither volume nor area but line. 

IV. ROUTE TO CHAOS IN THE HYSTERESIS SYSTEM 

For a simplicity, we select r7 as the control parameter and the 
other parameters (al, /?I, ~2, ,&) are fixed. The equilibrium 
point is on the line l? = {(x, h) 1 y1 = ~~1x1, y2 = 771222) 
and it approaches to the origin as v decreases. 

;(d) 

-2, j a I 
I I I 

1 'y1- 5 
Fig. 6. Lyapunov exponents (cul, PI, ~2, 02) = (7.5, 0.16, 15, 0.097). 0 
= Largest 1-D exponents ~1, + = Largest 2-D exponents ~2, 0 = 3-D 
exponent ~3. Attractors (a) to (d) in Fig. 5 arc observed at (a) to (d) in this 
figure. 

Fig. 6 shows the Lyapunov exponents for the return map 
attractors. In this calculation, we have confirmed that the 
exponents reasonably converged in about 10 000 iterations. So 
we calculate Lyapunov exponents by using 10 000 iterations 
after 5000 steps. Here, the attractors (a) to (d) in Fig. 5 are 
observed at Fig. 6(a) to (d), respectively. At Fig. 6(b), the 
attractor is torus hence ~1 is zero. At Fig. 6(c), ~2 is positive 
and the attractor is area expanding chaos. At Fig. 6(d), ~3 is 
positive and the attractor is volume expanding chaos. 

Then, we show a rough scenario for these transitions as 7 
decreases: 

1) 

2) 

3) 

(a) + (b): The periodic attractor changes to torus via 
Hopf bifurcation. we have confirmed that epl crosses 
the unit circle at Hopf bifurcation set. 
(b) + (c): The transition from torus to area expanding 
chaos is due to the doubling of torus [25], [26]. We 
have confirmed torus rolled four times in laboratory 
experiments (see Fig. 7). If we perform more precise 
experiment, the torus rolled more times seems to be 
observed. Fig. 8 shows the Lyapunov exponents in this 
transition. Here, Torus rolled two times and four times 
are observed in Fig. 8(e) and (f), respectively. 
In the flow in a 3-D phase space (e.g., Riissler’s spiral), 
period doubling causes transition from periodicity to 
chaos. Then 1-D Lyapunov exponent changes from 
negative to positive. Therefore, if torus doubling to 
chaos takes place in a 3-D return map, /12 changes from 
negative to positive. The line expanding chaos can not 
be observed in the transition. We can see the above in 
Fig. 8. 
(c) + (d): Area expanding chaos changes to volume 
expanding chaos. As shown in Figs. 2 and 3, the volume 
expanding chaos has different, topology from the area 
expanding chaos. In the volume expanding chaos, the 
trajectory arcs can be classified into two categories as 
shown in Fig. 9(I). Arcs (a) and (b) represent the first 
and second categories, respectively. (a) Touches Thh, 
and (b) does not touch that. Arc (a) has longer switching 
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+ v2 
(4 

(b) 
Fig. 7. Attractors from the return map in torus doubling (C N 10 nF, 
R N 15 k0, Li 1: 300 mH, L2 N 150 mH, t-1 N 2.5 kfl, ~2 N 1.5 
kR). Normalized parameters: (oi, pi, q, /32) = (7.5, 0.16, 15, 0.097) (a) 
Torus rolled two times for n N 2.6; (b) torus rolled four times for n N 2.52. 

interval of h than (b). The longer switching interval 
corresponds to the longer arc. This figure includes the 
region \T, = {x 1 ~r+za = 1, kr+& = 0} on which the 
trajectory touches Th-. Note that 0 < 61, Sa CC 1 (in this 
figure, 61 = 0.04 and 62 = 0.09). If the attractor includes 
P, such longer trajectory is born. We have confirmed 
that the area expanding chaos does not includes the 
longer trajectory segment. Fig. 9(11) shows an example 
of projection of the return map attractor for volume 
expanding chaos and it includes Q. Fig. 9(111) shows 
that for area expanding chaos and it excludes Xl!. 

Then we have calculated a rough two parameters bifurcation 
diagram as shown in Fig. 10. Here, we note that a2 is propor- 
tional to L2 and it controls the second resonance frequency. 
The bifurcation shown in Fig. 5 is observed along the dotted 
line. This figure suggests that the torus doubling route to chaos 
is not singular. 

V. CONCLUSION 

We have considered a 4-D plus hysteresis chaos generator. 
The circuit dynamics are described by two symmetric 4- 
D linear equations connected to each other by hysteresis 
switchings. We have transformed the circuit equation into 
Jordan form and have derived theoretical formulas of its 3- 
D return map, its Jacobian matrix and its Jacobian. These 
formulas can be developed easily to general dimensional cases. 
They are used to evaluate Lyapunov exponents. Then we have 
discovered torus doubling route to area expanding chaos and 
volume expanding chaos. Some of the return map attractor 
have been confirmed by laboratory experiments. We have also 

+ 
-0.5 !, I I I I 

248 i -l- 2.78 
I 
I i _._._._,___. -___-_-_-_-.-.-.-.-_____ 

0.057 
+ 
I 

-0.4 I I I 
243 i i 2.518 

i 
c.-.-.-.-.-.-.; i L_-.-.-.-.- .-.-. 3r 

0.01 

-0.051 I I I 
2595 2.501 

Fig. 8. Lyapunov exponents in torus doubling (cyi, fir, cys, ,!j’s) = (7.5,O. 16, 
15,0.097). 0 = Largest 1-D exponents ~1, + = Largest 2-D exponents {~2. 
l Attractors (a) and (b) in Fig. 7 are observed at (e) and (f) in this figure. 

calculated a rough two parameters bifurcation diagram. Then 
we enumerate following future problems: 

1) In order to analyze the bifurcations in more detail, 
interaction between two frequencies wr and ws should 
be investigated. If the two frequencies match each other, 
the attractor is to be periodic. As parameter varies, this 
matching is destroyed and the complicated phenomena 
are caused. 

2) Much more complicated but interesting phenomena may 
occur in higher odd dimensional systems which includes 
many resonance frequencies (WI, w2, . . . , UN). Our sys- 
tematic analysis procedure may enable ‘us to approach 
to higher dimensional systems. 

3) We should try to apply the hysteresis system for some 
engineering applications, e.g. spread spectrum communi- 
cations and controlling chaos. Especially, a basic appli- 
cation for controlling chaos will be published elsewhere. 

APPENDM I 
THE DERIVATION OF JACOBIAN MATRIX DF 

First, we introduce the following: 

u z x(O), v =: x(71) (17) 
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Differentiating both sides of f, we have: 

-DF = a(%, v3i v4) af 
qu2, u3, U4) = du 

= SeArI g + SAeA” (U - VP) 2 

Noting that UI = -U3 + v(pl + p2) + 1: 

(20) 

(21) 

Applying theorem on implicit function for g = 0, we obtain: 

weArIT 
wAeA71 (U - up) (22) 

where note that the denominator of the above is the velocity 
of w(V - np) and it is negative because wx(= 21 + 52) hits 
-1 from the right at T = 71. Substituting (21) and (22) into 
(20), we obtain (14). 

(1) m 
Fig. 9. Characterizing volume expanding chaos. (I) Two kinds of trajectories, 
trajectory (a) touches Th- and (b) does not touch it. (II) The projection of 
the return map attractor in volume expanding chaos for 1) = 1.3; (III) that in 
area expanding chaos for n = 2.0. 

APPENDIX II 
THE DERIVATION OF JACOBIAN IDF 1 

Noting (12), first we define: 

G(TI(u), u, v(u)) = eA’(U - VP) - (V - VP) 

Differentiating G  = 0 by (71, u), we obtain: 

(23) 

15 dG dG a(~,, v> 
a2 iqT,,U) + d(Tl,V)rn = O  

(24) 

14 
ab. K + LX = 0, ([LllXl = 1 - Kj), where 

13 

12 
A.&C. t I J  

1 2 3 4 5 
n 

l. 

Fig. 10. Two parameters bifurcation diagram (LY~, @I, @s)  = (7.5, 0.16, 
0.097). P: periodic attractor, Tn: torus rolled n times, L.e.c: line expanding 
chaos, A.e.c: area expanding chaos, V.e.c: volume expanding chaos, d: 
divergence. The broken curve is torus doubling bifurcation set. The bifurcation 
in Fig. 6 is observed along the dotted line. 

0 -1 0 

A(U - qp) i y : (25) 

0 0 1 

1 
0 1 0 

-; -; o 0 

0 o-1 

1 (26) 

^ 

Using the above, we recast (11) into the following: 

F : (U2, U3, U4) 4 -(Vi, v,, K) (18) 

Using Cramer’s formula, we obtain: 
ab. F : u + -v where, u = SU, v=sv 

I- KI = IeAT IwA(U - vp) (28) 
Next, we define the following functions: IL1 = -wA(V - qp) (29) 

f(u, n(u)) 5 S(eA’(U - VP) + VP), +J - VP) = 1, Substituting these into I - KI/ILI = 1x1 = -IDFI, we obtain 
g(u,n(u)) c w(eA’(U - qp) + qp) + 1 = 0. 

-. 
(19) (15). 



MITSUBORI AND SAlTO: A FOUR-DIMENSIONAL PLUS HYSTERESIS CHAOS GENERATOR 789 

HI 

[21 

t31 

141 

PI 

[61 

171 

PI 

191 

UOI 

u11 

WI 

1131 

1141 

t:z; 

1171 

1181 

1191 

WI 
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