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Abstract— A systematic circuit design approach is proposed
for experimental verification of hyperchaotic 2, 3, 4−scroll at-
tractors from a generalized Matsumoto-Chua-Kobayashi (MCK)
circuit. The recursive formulas for system parameters are rigor-
ously derived for improving the hardware implementation.

I. INTRODUCTION

Hyperchaos was first observed from a real physical sys-
tem by Matsumoto, Chua and Kobayashi in [1]. Then, Yal-
cin et al. [2] introduced some hyperchaotic n−double-scroll
chaotic attractors by adding breakpoints in the piecewise-
linear (PWL) characteristic of the MCK circuit and confirmed
the hyperchaotic 4− and 6−scroll attractors by computer
simulations. Yu et al. [3] proposed hyperchaotic n−scroll
attractors and realized hyperchaotic 3 ∼ 10-scroll attractors by
computer simulations. Itoh et al. [4] investigated the impulsive
synchronization of a hyperchaotic double-scroll attractor and
its application to spread-spectrum communication systems. It
has been known that it is generally difficult to implement
multi-scroll chaotic and hyperchaotic attractors by a physical
electronic circuit. Yalcin et al. [5] experimentally confirmed
3− and 5−scroll chaotic attractors in a generalized Chua’s
circuit, while Zhong et al. [6] proposed a systematical circuitry
design method for physically implementing up to as many
as ten scrolls visible on the oscilloscope. Han et al. [7]
constructed a double-hysteresis building block to physically
realize a 9−scroll chaotic attractor. There are some other
approaches reported in the literature for the design and circuit
implementation of multi-scroll chaotic attractors [8-14]. It is
generally quite difficult to physically build a nonlinear resistor
having an appropriate characteristic with many segments. In
this effort, Lü et al. [13] designed a novel circuit diagram
to physically verify the multi-directional multi-scroll chaotic
attractors. The main obstacle is that the device must have a
very wide dynamic range [3,6], however physical conditions
always limit or even prohibit such circuit realization [6].
Recently, Lü and Chen [14] reviewed the main advances of
multi-scroll chaos generation.

In this paper, we describe the design of a novel block
circuit diagram to experimentally confirm hyperchaotic n-
scroll attractors. This is the first time in the literature to report

an experimental verification of hyperchaotic 3− and 4−scroll
attractors. Moreover, the derived recursive formulas for system
parameters provide a theoretical basis for physical realization
of hyperchaotic attractors with a large number of scrolls.

The rest of the paper is organized as follows. In Section
II, a general MCK circuit is briefly described. Then, a novel
block circuit diagram is designed for hardware implementation
of hyperchaotic 2, 3, 4−scroll attractors, and its dynamic
equation is rigorously derived in Section III. Conclusions are
finally drawn in Section IV.

II. A GENERALIZED MCK CIRCUIT

The dimensionless state equation of the hyperchaotic MCK
circuit is described by [1]




dx
dτ = α[g(y − x) − z]
dy
dτ = β[−g(y − x) − w]
dz
dτ = γ0(x + z)
dw
dτ = γ y ,

(1)

where g(y − x) = m1(y − x) + 0.5(m0 − m1)[|y −
x + 1| − |y − x − 1|]. When α = 2, β = 20, γ0 =
1, γ = 1.5, m0 = −0.2, m1 = 3, system (1) has a
hyperchaotic double-scroll attractor with Lyapunov exponents
λ1 = 0.24, λ2 = 0.06, λ3 = 0, λ4 = −53.8.

To generate hyperchaotic n−scroll attractors from (1), we
first generalize the characteristic function g(y − x), given in
[3], as follows:

g(y − x) = mN−1(y − x)+

0.5
N−1∑
i=1

(mi−1 − mi)(|y − x + xi| − |y − x − xi|).
(2)

The recursive formulas of positive switching points xi(i =
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2, 3, · · · , N − 1) can be easily deduced as follows:


x2 =
(1+ k1)

1�

i=1
(mi −mi−1)xi

m1 − 1 − k1x1

x3 =
(1+ k2)

2�

i=1
(mi −mi−1)xi

m2 − 1 − k2x2

...

xN−1 =
(1 + kN−2)

N−2�

i=1
(mi −mi−1)xi

mN−2 − 1 − kN−2xN−2 ,
(3)

where mi(0 ≤ i ≤ N − 1) are the slopes of the segments

and radials in various PWL regions, and ki = xi+1 −xE
i

xE
i − xi

(1 ≤
i ≤ N − 2), in which xE

i (1 ≤ i ≤ N − 2) are the positive
equilibrium points of g(x).

To control the hyperchaotic signal into the region of the
operational amplifier, we may assume that x1 < 1. Here,
we suppose that x1 = 0.5. From (3), we determine the
system parameters as follows: (i) when N = 2, m0 = −0.2,
m1 = 3, system (1) with (2) has a hyperchaotic double-
scroll attractor; (ii) when N = 3, m0 = 3, m1 = −0.8,
m2 = 3, x2 = 1.8333, system (1) with (2) has a hyperchaotic
3−scroll attractor; (iii) when N = 4, m0 = m2 = −0.7,
m1 = m3 = 2.9, x2 = 1.5289, x3 = 3.0239, system (1)
with (2) has a hyperchaotic 4−scroll attractor.

III. CIRCUIT DESIGN AND IMPLEMENTATION

In this section, a circuit diagram is constructed to experi-
mentally verify the hyperchaotic 2, 3, 4−scroll attractors. Also,
the dynamic equation is rigorously derived from the circuit
diagram shown in Fig. 1.

A. Circuit diagram and its dynamic equation

Fig. 1 shows the circuit diagram, where N1 is the generator
of the negative resistor −R, and NR is the multi-PWL function
generator satisfying IN = f(vC2 − vC1). All operational
amplifiers are selected as Type TL082. The voltage of the
electric source is E = 15V . Thus, the saturating voltages of
the operation amplifiers are Esat = 14.3V .

According to Fig. 1, the circuit equation is derived as
follows: 



C1
dvC1

dt = f(vC2 − vC1) − iL1

C2
dvC2

dt = − f(vC2 − vC1) − iL2

L1
diL1
dt = vC1 + R iL1

L2
diL2
dt = vC2 ,

(4)

where f(vC2 − vC1) = GN−1(vC2 − vC1) +

0.5
N−1∑
i=1

(Gi−1 − Gi)(|vC2 − vC1 + Ei| − |vC2 − vC1 − Ei|)
is a piecewise-linear characteristic function.

Comparing systems (1) with (4), we get the transformation
relationship of parameters as follows:



τ0 = 2RC1, τ = t
τ0

, α = 2, β = 2C1
C2

= 20
γ0 = 2R2C1

L1
= 1, γ = 2R2C1

L2
= 1.5

x = vC1
VBP

, y = vC2
VBP

, z = RiL1
VBP

, w = RiL2
VBP

VBP = 1V, Gi = miG(i = 0, 1, 2, · · · ), G = 1
R

g(y − x) = Rf(vC2 − vC1) ,

(5)

where VBP = 1V, 1
τ0

= 1
2RC1

is the time-scale transforma-
tion factor.

From (5), we have the parameters:L1 = 9mH, L2 =
6mH, C1 = 50nF, C2 = 5nF, R = 300Ω. Then, we
can get the theoretical values of the resistors based on the
parameters given in Section II as follows:
(1) For hyperchaotic 2−scroll attractor:




G0 = m0
R = −0.67mS, G1 = m1

R = 10mS,

E1 = x1VBP , r1 = R12
R11

= G1R2 − 1 = 1.00,

r2 = R22
R21

= Esat

E1
= 28.6,

r3 = R32
R31

= r2
R2(G1−G0)

− 1 = 12.4 .

(6)

(2) For hyperchaotic 3−scroll attractor:



G0 = m0
R = 10mS, G1 = m1

R = −2.7mS,
G2 = m2

R = 10mS, Ei = xiVBP (i = 1, 2),
r1 = R12

R11
= G2R2 − 1 = 1.00,

r2 = R22
R21

= Esat

E2
= 7.80,

r3 = R32
R31

= r2
R2(G2−G1)

− 1 = 2.08,

r4 = R42
R41

= Esat

E1
− 1 = 27.60,

r5 = R52
R51

= − 1+r4
R2(G1−G0)

− 1 = 10.29 .

(7)

(3) For hyperchaotic 4−scroll attractor:


G0 = m0
R = −2.3mS, G1 = m1

R = 9.7mS,
G2 = m2

R = −2.3mS, G3 = m3
R = 9.7mS,

Ei = xiVBP (i = 1, 2, 3), r1 = R12
R11

= G3R2 − 1 = 0.93,

r2 = R22
R21

= Esat

E3
= 4.73,

r3 = R32
R31

= r2
R2(G3−G2)

− 1 = 0.97,

r4 = R42
R41

= Esat

E2
− 1 = 8.35,

r5 = R52
R51

= − 1+r4
R2(G2−G1)

− 1 = 2.90,

r6 = R62
R61

= Esat

E1
= 28.6,

r7 = R72
R71

= r6
R2(G1−G0)

− 1 = 10.90 .
(8)

B. Experimental observations

TABLE I
THE RATIOS OF THE RESISTORS rn = Rn2

Rn1
(1 ≤ n ≤ 7)

AND THE NUMBER OF THE SCROLLS N

r1 r2 r3 r4 r5 r6 r7 N
1.00 28.60 12.40 2
1.00 7.80 2.08 27.60 10.29 3
0.93 4.73 0.97 8.35 2.90 28.60 10.90 4

TABLE II
THE RESISTORS Rn2 = rnRn1(1 ≤ n ≤ 7) AND THE

NUMBER OF THE SCROLLS N

R12 R22 R32 R42 R52 R62 R72 N
10k 286k 12.4k 2
10k 78k 2.08k 276k 10.29k 3
9.3k 47.3k 0.97k 83.5k 2.90k 286k 10.9k 4

Let R1 = 100kΩ, R2 = 0.2kΩ, R31 = R51 = R71 =
1kΩ, R11 = R21 = R41 = R61 = 10kΩ. By comparing
Fig. 1 with system (1) under (2), we can calculate the resistors
Rn2 (1 ≤ n ≤ 7) as shown in Tables I and II. As seen
from Fig. 1, when K1, K2 are switched on and K3, K4 are
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Fig. 1. Circuit diagram for generating hyperchaotic n−scroll attractors.

switched off, the circuit diagram can create a hyperchaotic
double-scroll attractor; when K1, K2, K3 are switched on
and K4 is switched off, the circuit diagram can generate a
hyperchaotic 3−scroll attractor, as shown in Fig. 2 (a); when
K1, K2, K3, K4 are switched on, the circuit diagram can
create a hyperchaotic 4−scroll attractor, as shown in Fig. 2
(b).

IV. CONCLUSIONS

This brief paper has proposed a novel block circuit diagram
for hardware implementation of hyperchaotic 2, 3, 4−scroll
attractors in a generalized MCK circuit. In addition, the
derived recursive formulas for system parameters provide a
theoretical basis for physical realization of the hyperchaotic
attractors with a large number of scrolls.
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